integral of (sec(x)tan(x))/(sec^2(x)+3sec(x))
|
\int\:\frac{\sec(x)\tan(x)}{\sec^{2}(x)+3\sec(x)}dx
|
slope sqrt(x)+1/(sqrt(x^3))
|
slope\:\sqrt{x}+\frac{1}{\sqrt{x^{3}}}
|
integral of ((x-2)/(x(x^2+2)))
|
\int\:(\frac{x-2}{x(x^{2}+2)})dx
|
integral from 0 to 2 of integral from 0 to sqrt(2-x^2 of)18xy
|
\int_{\:0}^{2}\int_{0}^{\sqrt{2-x^{2}}}18xydydx
|
integral of 1/((u+1)^2)
|
\int\:\frac{1}{(u+1)^{2}}du
|
x^2y^{\prime}=1-x^2+y^2-x^2y^2
|
x^{2}y^{\prime\:}=1-x^{2}+y^{2}-x^{2}y^{2}
|
integral of x^2cos(1/3 x)
|
\int\:x^{2}\cos(\frac{1}{3}x)dx
|
limit as x approaching-infinity of ((e^x))/x
|
\lim_{x\to\:-\infty\:}(\frac{(e^{x})}{x})
|
(dy)/(dx)=-sin^2(x+y)
|
\frac{dy}{dx}=-\sin^{2}(x+y)
|
integral from-1 to 1 of sqrt(x+2)
|
\int_{\:-1}^{1}\sqrt{x+2}
|
limit as x approaching 0 of ((x^2+64))/(x+8)
|
\lim_{x\to\:0}(\frac{(x^{2}+64)}{x+8})
|
limit as x approaching infinity of (sqrt(x+3x^2))/(4x-1)
|
\lim_{x\to\:\infty\:}(\frac{\sqrt{x+3x^{2}}}{4x-1})
|
derivative of sqrt(r)+\sqrt[7]{r}
|
derivative\:of\:\sqrt{r}+\sqrt[7]{r}
|
limit as x approaching 2 of (2-x)/(2x^2-4)
|
\lim_{x\to\:2}(\frac{2-x}{2x^{2}-4})
|
limit as x approaching-2 of (x+2)/(2x+sqrt(x^2+12))
|
\lim_{x\to\:-2}(\frac{x+2}{2x+\sqrt{x^{2}+12}})
|
area y=9x^2,y=x^2+6
|
area\:y=9x^{2},y=x^{2}+6
|
tangent of f(x)=sin(0),cos(1),2cos(1)
|
tangent\:of\:f(x)=\sin(0),\cos(1),2\cos(1)
|
integral from pi^2 to 4pi^2 of (sin(sqrt(x)))/(sqrt(x))
|
\int_{\:\pi^{2}}^{4\pi^{2}}\frac{\sin(\sqrt{x})}{\sqrt{x}}dx
|
integral of cos^7(y)
|
\int\:\cos^{7}(y)dy
|
derivative of-5cot(x)
|
\frac{d}{dx}(-5\cot(x))
|
integral of y/((y+2)(3y-1))
|
\int\:\frac{y}{(y+2)(3y-1)}dy
|
(dx)/(dt)-0.06x=200
|
\frac{dx}{dt}-0.06x=200
|
derivative of 2+8/x+6/(x^2)
|
derivative\:of\:2+\frac{8}{x}+\frac{6}{x^{2}}
|
limit as x approaching-3 of (4x^2+12x)/(x^2+4x+3)
|
\lim_{x\to\:-3}(\frac{4x^{2}+12x}{x^{2}+4x+3})
|
(-sin(x))\prime
|
(-\sin(x))\prime\:
|
limit as x approaching 3 of ((2x^3-5x^2-2x-3))/(4x^3-13x^2+4x-3)
|
\lim_{x\to\:3}(\frac{(2x^{3}-5x^{2}-2x-3)}{4x^{3}-13x^{2}+4x-3})
|
implicit derivative (dy)/(dx),sqrt(x)+sqrt(y)=5
|
implicit\:derivative\:\frac{dy}{dx},\sqrt{x}+\sqrt{y}=5
|
limit as x approaching infinity of (-3x+1)/(sqrt(x^2+x))
|
\lim_{x\to\:\infty\:}(\frac{-3x+1}{\sqrt{x^{2}+x}})
|
d/(ds)(sqrt(3)(s^3-s^2))
|
\frac{d}{ds}(\sqrt{3}(s^{3}-s^{2}))
|
integral of 9e^{-3x}
|
\int\:9e^{-3x}dx
|
limit as n approaching infinity of ((n^2+1))/(n^3+n+100)
|
\lim_{n\to\:\infty\:}(\frac{(n^{2}+1)}{n^{3}+n+100})
|
derivative of (1/(1-x^2))
|
derivative\:of\:(\frac{1}{1-x^{2}})
|
y^{\prime \prime}=-y+0.1y^{\prime}
|
y^{\prime\:\prime\:}=-y+0.1y^{\prime\:}
|
limit as x approaching 0 of 81x^4-216x^3+216x^2-96x+16
|
\lim_{x\to\:0}(81x^{4}-216x^{3}+216x^{2}-96x+16)
|
y^{\prime}-y=11te^{2t}
|
y^{\prime\:}-y=11te^{2t}
|
limit as n approaching infinity of 1/(4n)
|
\lim_{n\to\:\infty\:}(\frac{1}{4n})
|
laplace sin(5pi t)
|
laplace\:\sin(5\pi\:t)
|
limit as x approaching 0 of x*cos(x)
|
\lim_{x\to\:0}(x\cdot\:\cos(x))
|
integral of e^{(-x)/4}
|
\int\:e^{\frac{-x}{4}}dx
|
limit as x approaching (5π)/6 of cos(x)
|
\lim_{x\to\:\frac{5π}{6}}(\cos(x))
|
limit as x approaching infinity of cos(6x)
|
\lim_{x\to\:\infty\:}(\cos(6x))
|
d/(dy)(x/(y^2))
|
\frac{d}{dy}(\frac{x}{y^{2}})
|
sum from n=1 to infinity of 5/(n(n+6))
|
\sum_{n=1}^{\infty\:}\frac{5}{n(n+6)}
|
tangent of 2x^2+3xy+1y^3=-10,\at (-3,-4)
|
tangent\:of\:2x^{2}+3xy+1y^{3}=-10,\at\:(-3,-4)
|
limit as x approaching 4 of (2/(sqrt(x))-2/(sqrt(4)))/(x-4)
|
\lim_{x\to\:4}(\frac{\frac{2}{\sqrt{x}}-\frac{2}{\sqrt{4}}}{x-4})
|
integral from 20 to 30 of integral from 20 to 30 of x^2+y^2
|
\int_{\:20}^{30}\int_{20}^{30}x^{2}+y^{2}dxdy
|
x^2y^{\prime \prime}+xy^{\prime}+y=sec(ln(x))
|
x^{2}y^{\prime\:\prime\:}+xy^{\prime\:}+y=\sec(\ln(x))
|
derivative of (x+2/(x-3))
|
\frac{d}{dx}(\frac{x+2}{x-3})
|
limit as x approaching infinity of (3^n)/(n2^n)
|
\lim_{x\to\:\infty\:}(\frac{3^{n}}{n2^{n}})
|
derivative of ln^3(3x^2-5)
|
\frac{d}{dx}(\ln^{3}(3x^{2}-5))
|
integral of (x^2+2)^3
|
\int\:(x^{2}+2)^{3}dx
|
limit as x approaching 0 of (x-4)^3
|
\lim_{x\to\:0}((x-4)^{3})
|
limit as x approaching-5/4 of (12x^2+7x-10)/(8x+10)
|
\lim_{x\to\:-\frac{5}{4}}(\frac{12x^{2}+7x-10}{8x+10})
|
y^{\prime}=((y^2+1))/x
|
y^{\prime\:}=\frac{(y^{2}+1)}{x}
|
limit as x approaching 1 of (1-(2ln(1+x))/x)/(x)
|
\lim_{x\to\:1}(\frac{1-\frac{2\ln(1+x)}{x}}{x})
|
integral of (12)/(sqrt(x))+12sqrt(x)
|
\int\:\frac{12}{\sqrt{x}}+12\sqrt{x}dx
|
limit as x approaching infinity of (cos(1/(x^2)))/(1/(x^2))
|
\lim_{x\to\:\infty\:}(\frac{\cos(\frac{1}{x^{2}})}{\frac{1}{x^{2}}})
|
area y= 1/(x^2),y=9,x=8
|
area\:y=\frac{1}{x^{2}},y=9,x=8
|
derivative of x+xy+y^3=11
|
\frac{d}{dx}(x+xy+y^{3})=11
|
integral of (-4x+4)/(5(4x^2-4x+5))
|
\int\:\frac{-4x+4}{5(4x^{2}-4x+5)}dx
|
limit as x approaching 0 of (x^2-x-2)/(x^2-4x+4)
|
\lim_{x\to\:0}(\frac{x^{2}-x-2}{x^{2}-4x+4})
|
derivative of arcsec(2^x)
|
\frac{d}{dx}(\arcsec(2^{x}))
|
tangent of f(x)=5tan(x),\at x=(pi)/4
|
tangent\:of\:f(x)=5\tan(x),\at\:x=\frac{\pi}{4}
|
inverse laplace 5
|
inverse\:laplace\:5
|
derivative of sqrt(9x-45)
|
\frac{d}{dx}(\sqrt{9x-45})
|
derivative of f(x)=4x^{-3}+x^2+14
|
derivative\:of\:f(x)=4x^{-3}+x^{2}+14
|
derivative of e^{-2/3 x}
|
\frac{d}{dx}(e^{-\frac{2}{3}x})
|
derivative of x^2-2sqrt(x)/x
|
\frac{d}{dx}\frac{x^{2}-2\sqrt{x}}{x}
|
limit as x approaching 0 of x^{4sin(x)}
|
\lim_{x\to\:0}(x^{4\sin(x)})
|
derivative of f(x)=(sqrt(x))/(x+8)
|
derivative\:of\:f(x)=\frac{\sqrt{x}}{x+8}
|
4sin(θ)
|
4\sin(θ)
|
integral of (x-3)/(\sqrt[3]{x^5)}
|
\int\:\frac{x-3}{\sqrt[3]{x^{5}}}dx
|
integral of tan^{3/2}(x)sec^4(x)
|
\int\:\tan^{\frac{3}{2}}(x)\sec^{4}(x)dx
|
integral of (3x+16)/(x^2-x-6)
|
\int\:\frac{3x+16}{x^{2}-x-6}dx
|
limit as x approaching 1 of 0.8x+1.2
|
\lim_{x\to\:1}(0.8x+1.2)
|
limit as x approaching-infinity of (4x^2)/(x+3)
|
\lim_{x\to\:-\infty\:}(\frac{4x^{2}}{x+3})
|
limit as x approaching 0 of cos(x)sin(x)
|
\lim_{x\to\:0}(\cos(x)\sin(x))
|
y^{\prime}=2y+3
|
y^{\prime\:}=2y+3
|
(dx)/(dt)=(a-b*t)x
|
\frac{dx}{dt}=(a-b\cdot\:t)x
|
volume between y=9x^5 and y=9x on interval [0,infinity ] about x=0
|
volume\:between\:y=9x^{5}\:and\:y=9x\:on\:interval\:[0,\infty\:]\:about\:x=0
|
derivative of (x^2+x^2)
|
\frac{d}{dx}((x^{2}+x)^{2})
|
area y=(14)/x ,y=-64x+72
|
area\:y=\frac{14}{x},y=-64x+72
|
partial derivative of ln(b(x-vt))
|
\frac{\partial}{\partial\:x}(\ln(b(x-vt)))
|
sum from n=0 to infinity of (n^5)/(5^n)
|
\sum_{n=0}^{\infty\:}\frac{n^{5}}{5^{n}}
|
limit as t approaching-1 of ln(t+2)
|
\lim_{t\to\:-1}(\ln(t+2))
|
y=(z^2+1)/(z^2-1)
|
y=\frac{z^{2}+1}{z^{2}-1}
|
limit as x approaching-infinity of (x-8)/(x^2+6)
|
\lim_{x\to\:-\infty\:}(\frac{x-8}{x^{2}+6})
|
derivative of d/(dx(y))+y=-1
|
\frac{d}{dx}(\frac{d}{dx}(y))+y=-1
|
limit as x approaching 1 of (x^2+2)/(3x^2+3)
|
\lim_{x\to\:1}(\frac{x^{2}+2}{3x^{2}+3})
|
integral of (e^x+e)
|
\int\:(e^{x}+e)dx
|
(\partial)/(\partial x)(-(x-2)(y-2)(x+y-3))
|
\frac{\partial\:}{\partial\:x}(-(x-2)(y-2)(x+y-3))
|
integral of (4x)/(sqrt(3x^2-1))
|
\int\:\frac{4x}{\sqrt{3x^{2}-1}}dx
|
(\partial)/(\partial y)(4x^3y^3-3x^2sin(x^3)y)
|
\frac{\partial\:}{\partial\:y}(4x^{3}y^{3}-3x^{2}\sin(x^{3})y)
|
f(x)=x^3+2x
|
f(x)=x^{3}+2x
|
integral from 1 to 2 of integral from 0 to-x+3 of ((8xy))/(21)
|
\int_{\:1}^{2}\int_{0}^{-x+3}\frac{(8xy)}{21}dydx
|
limit as x approaching infinity of (5-e^x)/(5+2e^x)
|
\lim_{x\to\:\infty\:}(\frac{5-e^{x}}{5+2e^{x}})
|
integral from-2 to 3 of integral from 2x^2 to x^2+1 of (x^2+y)
|
\int_{\:-2}^{3}\int_{2x^{2}}^{x^{2}+1}(x^{2}+y)dydx
|
(\partial)/(\partial x)(e^{-4x})
|
\frac{\partial\:}{\partial\:x}(e^{-4x})
|
limit as x approaching pi/2 of 4sec(x)
|
\lim_{x\to\:\pi/2}(4\sec(x))
|
partial derivative of 2*(x-y*e^{2y+2(x^2)})
|
\frac{\partial}{\partial\:x}(2\cdot\:(x-y)\cdot\:e^{2y+2(x^{2})})
|