symmetry x^2+2x+8
|
symmetry\:x^{2}+2x+8
|
inverse f(x)=(9x-1)/(2x+8)
|
inverse\:f(x)=\frac{9x-1}{2x+8}
|
inverse g(t)=ln(2t)
|
inverse\:g(t)=\ln(2t)
|
intercepts f(x)=-5x+9y=-18
|
intercepts\:f(x)=-5x+9y=-18
|
line 2x+3y=8
|
line\:2x+3y=8
|
domain f(x)=sqrt(6x-3)
|
domain\:f(x)=\sqrt{6x-3}
|
slope y=-5
|
slope\:y=-5
|
domain f(x)= x/(x^2-4)
|
domain\:f(x)=\frac{x}{x^{2}-4}
|
line (2,1)(8,7)
|
line\:(2,1)(8,7)
|
inverse f(x)=(7-8t)^{7/2}
|
inverse\:f(x)=(7-8t)^{\frac{7}{2}}
|
domain f(x)=x^2(x+4)\div (7x^2-3)
|
domain\:f(x)=x^{2}(x+4)\div\:(7x^{2}-3)
|
parallel x-2y=18,\at (3,-2)
|
parallel\:x-2y=18,\at\:(3,-2)
|
symmetry y=-3x^2+30x-2
|
symmetry\:y=-3x^{2}+30x-2
|
shift 5cos(pi x-2)+5
|
shift\:5\cos(\pi\:x-2)+5
|
inverse f(x)=(32)/(x+3)
|
inverse\:f(x)=\frac{32}{x+3}
|
periodicity y=cos(x-(pi)/6)
|
periodicity\:y=\cos(x-\frac{\pi}{6})
|
domain f(x)=\sqrt[7]{6-x}
|
domain\:f(x)=\sqrt[7]{6-x}
|
parallel x+3y=5
|
parallel\:x+3y=5
|
inverse f(x)=sqrt(6x+3)
|
inverse\:f(x)=\sqrt{6x+3}
|
critical points 4x^3-240x^2+3.6
|
critical\:points\:4x^{3}-240x^{2}+3.6
|
midpoint (2,0)(10,0)
|
midpoint\:(2,0)(10,0)
|
domain f(x)= x/(x+2)
|
domain\:f(x)=\frac{x}{x+2}
|
range y=sqrt(7/(x-5))
|
range\:y=\sqrt{\frac{7}{x-5}}
|
inverse 3/4 x^5+5
|
inverse\:\frac{3}{4}x^{5}+5
|
inverse (x^7)/7
|
inverse\:\frac{x^{7}}{7}
|
line (1,2)(22,3)
|
line\:(1,2)(22,3)
|
inflection points (x-2)^{(3)}
|
inflection\:points\:(x-2)^{(3)}
|
inverse f(x)=5x-x^2
|
inverse\:f(x)=5x-x^{2}
|
domain 5^x-4
|
domain\:5^{x}-4
|
asymptotes f(x)=10^{(x-2)}-5
|
asymptotes\:f(x)=10^{(x-2)}-5
|
inflection points f(x)=x^3-9x^2-21x+2
|
inflection\:points\:f(x)=x^{3}-9x^{2}-21x+2
|
asymptotes f(x)=(x^2-4x+4)/(x^2-7x+12)
|
asymptotes\:f(x)=\frac{x^{2}-4x+4}{x^{2}-7x+12}
|
inverse-x+9
|
inverse\:-x+9
|
slope intercept 10x+25y=225
|
slope\:intercept\:10x+25y=225
|
intercepts 4x^3-2sqrt(5)x-4x
|
intercepts\:4x^{3}-2\sqrt{5}x-4x
|
intercepts y=2^x
|
intercepts\:y=2^{x}
|
critical points 2/(x^{1/3)}-2
|
critical\:points\:\frac{2}{x^{\frac{1}{3}}}-2
|
domain f(x)= 5/(sqrt(3+10x))
|
domain\:f(x)=\frac{5}{\sqrt{3+10x}}
|
domain f(x)=|x-6|
|
domain\:f(x)=|x-6|
|
inverse f(x)=(2x-1)/(3x-1)
|
inverse\:f(x)=\frac{2x-1}{3x-1}
|
domain sqrt(t+16)
|
domain\:\sqrt{t+16}
|
asymptotes x+2
|
asymptotes\:x+2
|
domain f(x)=x^2+3x-4
|
domain\:f(x)=x^{2}+3x-4
|
parity x^7+5x^3+10x
|
parity\:x^{7}+5x^{3}+10x
|
midpoint (-5.5,-6.1)(-0.5,9.1)
|
midpoint\:(-5.5,-6.1)(-0.5,9.1)
|
asymptotes f(x)=x^3+x^2-9x-9
|
asymptotes\:f(x)=x^{3}+x^{2}-9x-9
|
midpoint (-4,5)(5,-8)
|
midpoint\:(-4,5)(5,-8)
|
line (5,4),(8,6)
|
line\:(5,4),(8,6)
|
extreme points f(x)=x^3-12x+12
|
extreme\:points\:f(x)=x^{3}-12x+12
|
inverse y=-3x+4
|
inverse\:y=-3x+4
|
extreme points 120x-0.4x^4+700
|
extreme\:points\:120x-0.4x^{4}+700
|
slope intercept x+y=-4
|
slope\:intercept\:x+y=-4
|
inverse x^2+2x
|
inverse\:x^{2}+2x
|
extreme points f(x)= 1/3 x^3-x^2-3x+10
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-x^{2}-3x+10
|
domain f(x)= x/(6x+25)
|
domain\:f(x)=\frac{x}{6x+25}
|
range (x^2)/(x^2+1)
|
range\:\frac{x^{2}}{x^{2}+1}
|
inverse f(x)= 4/x
|
inverse\:f(x)=\frac{4}{x}
|
range sqrt(2x+4)
|
range\:\sqrt{2x+4}
|
f(x)=sqrt(1/(x-1)+1)
|
f(x)=\sqrt{\frac{1}{x-1}+1}
|
range 4+7sqrt(25-x^2)
|
range\:4+7\sqrt{25-x^{2}}
|
slope m=2
|
slope\:m=2
|
domain f(x)=4x-1
|
domain\:f(x)=4x-1
|
shift-5sin(x)
|
shift\:-5\sin(x)
|
r=4sin(θ)
|
r=4\sin(θ)
|
domain sqrt(x^2+3)
|
domain\:\sqrt{x^{2}+3}
|
slope intercept 12+4y=-4x
|
slope\:intercept\:12+4y=-4x
|
extreme points x^3-9x^2+15x+8
|
extreme\:points\:x^{3}-9x^{2}+15x+8
|
extreme points f(x)=(4+3x)^7
|
extreme\:points\:f(x)=(4+3x)^{7}
|
slope-4,f(2)-8
|
slope\:-4,f(2)-8
|
parallel m=-2,\at (1,7)
|
parallel\:m=-2,\at\:(1,7)
|
asymptotes f(x)= 6/(x^2)
|
asymptotes\:f(x)=\frac{6}{x^{2}}
|
range f(x)=3sin(x/2)
|
range\:f(x)=3\sin(\frac{x}{2})
|
inverse-1/z 1/(z-1)
|
inverse\:-\frac{1}{z}\frac{1}{z-1}
|
inverse f(x)=-x-10
|
inverse\:f(x)=-x-10
|
inverse 9/5 c+32
|
inverse\:\frac{9}{5}c+32
|
domain f(x)=(4x^2-4)/(x+1)
|
domain\:f(x)=\frac{4x^{2}-4}{x+1}
|
midpoint (-6,12)(2,-20)
|
midpoint\:(-6,12)(2,-20)
|
line (3,9)\land (0,5)
|
line\:(3,9)\land\:(0,5)
|
domain f(x)=(x+4)/(x^2-8x+16)
|
domain\:f(x)=\frac{x+4}{x^{2}-8x+16}
|
asymptotes (2x-6)/(x^2-4x+3)
|
asymptotes\:\frac{2x-6}{x^{2}-4x+3}
|
f(x)=-x^2+4
|
f(x)=-x^{2}+4
|
inverse f(x)=(x+2)/2
|
inverse\:f(x)=\frac{x+2}{2}
|
domain f(x)=(x+6)/(x^2-12x+36)
|
domain\:f(x)=\frac{x+6}{x^{2}-12x+36}
|
asymptotes f(x)= 2/(x^2-5x+6)
|
asymptotes\:f(x)=\frac{2}{x^{2}-5x+6}
|
slope intercept 14x+19y=-5
|
slope\:intercept\:14x+19y=-5
|
extreme points f(x)=2x^3+4x^2-8x-11
|
extreme\:points\:f(x)=2x^{3}+4x^{2}-8x-11
|
domain 3/(4sqrt(\frac{5+3x){2)}}
|
domain\:\frac{3}{4\sqrt{\frac{5+3x}{2}}}
|
shift 5sin(6x-pi)
|
shift\:5\sin(6x-\pi)
|
inflection points f(x)=-1/4 x^4+x^3+36x^2
|
inflection\:points\:f(x)=-\frac{1}{4}x^{4}+x^{3}+36x^{2}
|
inverse-x+1
|
inverse\:-x+1
|
domain 2/((x+1)^3)
|
domain\:\frac{2}{(x+1)^{3}}
|
distance (3,10)(-2,-2)
|
distance\:(3,10)(-2,-2)
|
parity (cos(x))/((sin(x))^{0.5)}
|
parity\:\frac{\cos(x)}{(\sin(x))^{0.5}}
|
domain y=6-sqrt(x+36)
|
domain\:y=6-\sqrt{x+36}
|
domain sqrt(2x)(3x-8)
|
domain\:\sqrt{2x}(3x-8)
|
inverse [ 5/(z-0.2)-5/(z+0.4)-3]
|
inverse\:[\frac{5}{z-0.2}-\frac{5}{z+0.4}-3]
|
range x^2-6x+8
|
range\:x^{2}-6x+8
|
midpoint (17,-17),(0,-19)
|
midpoint\:(17,-17),(0,-19)
|
inverse f(x)=(x+2)^2-4
|
inverse\:f(x)=(x+2)^{2}-4
|
intercepts f(x)=-16x^2+60x+2
|
intercepts\:f(x)=-16x^{2}+60x+2
|