inverse f(x)=2ln(x^2+1)
|
inverse\:f(x)=2\ln(x^{2}+1)
|
intercepts f(x)=e^{-x}
|
intercepts\:f(x)=e^{-x}
|
critical points x^2-6x
|
critical\:points\:x^{2}-6x
|
inverse f(x)= 2/(x+4)
|
inverse\:f(x)=\frac{2}{x+4}
|
asymptotes f(x)=(3x^3-1)/(x^2-2x)
|
asymptotes\:f(x)=\frac{3x^{3}-1}{x^{2}-2x}
|
critical points f(x)=4x^3-3x
|
critical\:points\:f(x)=4x^{3}-3x
|
domain f(x)=(x-3)/(x^2+x-12)
|
domain\:f(x)=\frac{x-3}{x^{2}+x-12}
|
vertex f(x)=y=x^2+8x+18
|
vertex\:f(x)=y=x^{2}+8x+18
|
domain f(x)=x3
|
domain\:f(x)=x3
|
slope aa
|
slope\:aa
|
domain sqrt(x-2)
|
domain\:\sqrt{x-2}
|
intercepts y=x^2
|
intercepts\:y=x^{2}
|
monotone intervals f(x)=x-4/(x^2)
|
monotone\:intervals\:f(x)=x-\frac{4}{x^{2}}
|
slope 4x+3y=-2
|
slope\:4x+3y=-2
|
range f(x)=|x|-2
|
range\:f(x)=|x|-2
|
parity f(x)=x^5-x^3
|
parity\:f(x)=x^{5}-x^{3}
|
inverse f(x)=3x+2
|
inverse\:f(x)=3x+2
|
midpoint (5,3)(1,-5)
|
midpoint\:(5,3)(1,-5)
|
domain f(x)=x+11
|
domain\:f(x)=x+11
|
range ln(x)+6
|
range\:\ln(x)+6
|
domain f(x)= 1/(10(\frac{1){x+2})-4}
|
domain\:f(x)=\frac{1}{10(\frac{1}{x+2})-4}
|
domain f(x)=(2x-3sqrt(x)-2)/(4x-1)
|
domain\:f(x)=\frac{2x-3\sqrt{x}-2}{4x-1}
|
domain f(x)=((x+3)^2)/(sqrt(4x-1))
|
domain\:f(x)=\frac{(x+3)^{2}}{\sqrt{4x-1}}
|
range f(x)=|x^2-9|
|
range\:f(x)=|x^{2}-9|
|
line 1/3 x-3
|
line\:\frac{1}{3}x-3
|
inverse y=3(x+1)
|
inverse\:y=3(x+1)
|
intercepts f(x)=(16-x^2)/(5+x^2)
|
intercepts\:f(x)=\frac{16-x^{2}}{5+x^{2}}
|
inverse f(x)=(x-5)^2,x<= 5
|
inverse\:f(x)=(x-5)^{2},x\le\:5
|
extreme points f(x)=x(x-4)^2
|
extreme\:points\:f(x)=x(x-4)^{2}
|
x^2-x+1
|
x^{2}-x+1
|
domain f(x)=sqrt(x)+sqrt(10-x)
|
domain\:f(x)=\sqrt{x}+\sqrt{10-x}
|
line (-3,1),(-1,-2)
|
line\:(-3,1),(-1,-2)
|
inverse f(x)=(10)/(x-7)
|
inverse\:f(x)=\frac{10}{x-7}
|
intercepts x^3-5x^2+x+35
|
intercepts\:x^{3}-5x^{2}+x+35
|
inverse f(x)=5x^{1/3}-1
|
inverse\:f(x)=5x^{\frac{1}{3}}-1
|
asymptotes (2x^2+18)/x
|
asymptotes\:\frac{2x^{2}+18}{x}
|
midpoint (9,-9)(3,3)
|
midpoint\:(9,-9)(3,3)
|
inverse f(x)=8-1/x
|
inverse\:f(x)=8-\frac{1}{x}
|
line (2,0)(0,6)
|
line\:(2,0)(0,6)
|
range-(7x)/(6x-5)
|
range\:-\frac{7x}{6x-5}
|
domain sqrt(x-5)
|
domain\:\sqrt{x-5}
|
inverse f(x)=((x+3))/(x+6)
|
inverse\:f(x)=\frac{(x+3)}{x+6}
|
asymptotes f(x)=(-2)/(x+1)-1
|
asymptotes\:f(x)=\frac{-2}{x+1}-1
|
inverse f(x)=4x^2-6
|
inverse\:f(x)=4x^{2}-6
|
shift-5cos(x/3+(pi)/2)-4
|
shift\:-5\cos(\frac{x}{3}+\frac{\pi}{2})-4
|
f(x)=x-2
|
f(x)=x-2
|
line (-1,3)(3,5)
|
line\:(-1,3)(3,5)
|
range (-5x+25)/9
|
range\:\frac{-5x+25}{9}
|
symmetry 3/(x^2+3x-4)
|
symmetry\:\frac{3}{x^{2}+3x-4}
|
midpoint (6,4)(8,10)
|
midpoint\:(6,4)(8,10)
|
asymptotes (x^3)/(x^4-1)
|
asymptotes\:\frac{x^{3}}{x^{4}-1}
|
inverse 2ln(x-1)
|
inverse\:2\ln(x-1)
|
parallel y= 1/5 (x+4),\at (3,8)
|
parallel\:y=\frac{1}{5}(x+4),\at\:(3,8)
|
slope intercept 4x-12y=-84
|
slope\:intercept\:4x-12y=-84
|
perpendicular y=-9x+9
|
perpendicular\:y=-9x+9
|
distance (-1,12)(6,7)
|
distance\:(-1,12)(6,7)
|
inverse f(x)=ln(9x)
|
inverse\:f(x)=\ln(9x)
|
asymptotes f(x)=(x^2-9)/(x+9)
|
asymptotes\:f(x)=\frac{x^{2}-9}{x+9}
|
inverse f(x)=\sqrt[3]{x}-9
|
inverse\:f(x)=\sqrt[3]{x}-9
|
extreme points f(x)=2x^3-3x
|
extreme\:points\:f(x)=2x^{3}-3x
|
range f(x)=((x^2-1))/(x+1)
|
range\:f(x)=\frac{(x^{2}-1)}{x+1}
|
inverse f(x)=(x+2)/(x+10)
|
inverse\:f(x)=\frac{x+2}{x+10}
|
range cos(3x)
|
range\:\cos(3x)
|
intercepts f(x)=(-x^2-4x+5)/(4x-4)
|
intercepts\:f(x)=\frac{-x^{2}-4x+5}{4x-4}
|
domain f(x)=(sqrt(x-4))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x-4}}{x-6}
|
parity f(x)=x^4+x
|
parity\:f(x)=x^{4}+x
|
inverse sqrt(2x+3)
|
inverse\:\sqrt{2x+3}
|
parity x/(sin(x))
|
parity\:\frac{x}{\sin(x)}
|
inverse f(x)=y=x^2+3
|
inverse\:f(x)=y=x^{2}+3
|
intercepts (x^2-25)/(-2x^2-10x)
|
intercepts\:\frac{x^{2}-25}{-2x^{2}-10x}
|
shift-3sin(2x+(pi)/2)
|
shift\:-3\sin(2x+\frac{\pi}{2})
|
inverse 9x+4
|
inverse\:9x+4
|
inverse f(x)=2(x-1)^3
|
inverse\:f(x)=2(x-1)^{3}
|
inverse f(x)=2^{x-1}
|
inverse\:f(x)=2^{x-1}
|
range x^2+2x-8
|
range\:x^{2}+2x-8
|
inverse h(x)= 1/(x-1)
|
inverse\:h(x)=\frac{1}{x-1}
|
extreme points f(x)=-4x^3+6x^2-5
|
extreme\:points\:f(x)=-4x^{3}+6x^{2}-5
|
asymptotes f(x)=2*3^{x-4}
|
asymptotes\:f(x)=2\cdot\:3^{x-4}
|
periodicity f(x)= 5/3 sin(-(2pi)/3 x)
|
periodicity\:f(x)=\frac{5}{3}\sin(-\frac{2\pi}{3}x)
|
perpendicular y=8x-3,\at (6,2)
|
perpendicular\:y=8x-3,\at\:(6,2)
|
domain f(x)=(x/(x+7))/(x/(x+7)+7)
|
domain\:f(x)=\frac{\frac{x}{x+7}}{\frac{x}{x+7}+7}
|
inverse f(x)=(5x+9)/6
|
inverse\:f(x)=\frac{5x+9}{6}
|
domain f(x)=ln(6-x)
|
domain\:f(x)=\ln(6-x)
|
intercepts f(x)=4(3)^x
|
intercepts\:f(x)=4(3)^{x}
|
range sqrt(2-4x)-3
|
range\:\sqrt{2-4x}-3
|
domain 1/(sqrt(x-15))
|
domain\:\frac{1}{\sqrt{x-15}}
|
extreme points f(x)=-5(x-23)^2+41
|
extreme\:points\:f(x)=-5(x-23)^{2}+41
|
asymptotes f(x)=(3x-10)/(-5x-15)
|
asymptotes\:f(x)=\frac{3x-10}{-5x-15}
|
sin(x^2)
|
\sin(x^{2})
|
domain f(x)= 2/7 x-2
|
domain\:f(x)=\frac{2}{7}x-2
|
domain y= 7/(sqrt(x))
|
domain\:y=\frac{7}{\sqrt{x}}
|
range ln(x)+4
|
range\:\ln(x)+4
|
intercepts f(x)=sqrt(x-16)
|
intercepts\:f(x)=\sqrt{x-16}
|
range sqrt(3x+6)
|
range\:\sqrt{3x+6}
|
range \sqrt[3]{(x-1)/(x^2-sqrt(x))}
|
range\:\sqrt[3]{\frac{x-1}{x^{2}-\sqrt{x}}}
|
domain 1/(5-x)+3sqrt(x-1)
|
domain\:\frac{1}{5-x}+3\sqrt{x-1}
|
slope intercept 2x-1
|
slope\:intercept\:2x-1
|
domain f(x)=sqrt(x^2-3x)
|
domain\:f(x)=\sqrt{x^{2}-3x}
|
domain 4x-12
|
domain\:4x-12
|
asymptotes f(x)= 1/(x+5)-4
|
asymptotes\:f(x)=\frac{1}{x+5}-4
|