domain x/(x+1)+x^3
|
domain\:\frac{x}{x+1}+x^{3}
|
asymptotes y=(x^2-2x-3)/(-3x^2+15x-18)
|
asymptotes\:y=\frac{x^{2}-2x-3}{-3x^{2}+15x-18}
|
inverse 2/(x-4)
|
inverse\:\frac{2}{x-4}
|
extreme points f(x)=x^3-9x^2+27x-5
|
extreme\:points\:f(x)=x^{3}-9x^{2}+27x-5
|
inverse f(x)=(x-8)^2
|
inverse\:f(x)=(x-8)^{2}
|
intercepts-2x^3+13x^2-17x-12
|
intercepts\:-2x^{3}+13x^{2}-17x-12
|
inverse f(x)= 1/4 (x-4)^3
|
inverse\:f(x)=\frac{1}{4}(x-4)^{3}
|
extreme points f(x)=x^2-8x+21
|
extreme\:points\:f(x)=x^{2}-8x+21
|
critical points (x^2)/(x-3)
|
critical\:points\:\frac{x^{2}}{x-3}
|
inverse f(x)=x^2+8x
|
inverse\:f(x)=x^{2}+8x
|
inverse 6x-9
|
inverse\:6x-9
|
range f(x)=sqrt(1/x+2)
|
range\:f(x)=\sqrt{\frac{1}{x}+2}
|
inverse (x+3)^2-1
|
inverse\:(x+3)^{2}-1
|
midpoint (2,-1)(3,6)
|
midpoint\:(2,-1)(3,6)
|
intercepts (x^6+7)(x^{10}+9)
|
intercepts\:(x^{6}+7)(x^{10}+9)
|
line (-6,4)(6,-1)
|
line\:(-6,4)(6,-1)
|
midpoint (-1,5)(-3,5)
|
midpoint\:(-1,5)(-3,5)
|
inverse f(x)= 7/8 x+19/8
|
inverse\:f(x)=\frac{7}{8}x+\frac{19}{8}
|
monotone intervals (x^3)/2-6x
|
monotone\:intervals\:\frac{x^{3}}{2}-6x
|
inverse f(x)= 1/(sqrt(4))
|
inverse\:f(x)=\frac{1}{\sqrt{4}}
|
perpendicular y=-1/2 x+8(-2,5)
|
perpendicular\:y=-\frac{1}{2}x+8(-2,5)
|
intercepts (2x^2-3x-20)/(x-5)
|
intercepts\:\frac{2x^{2}-3x-20}{x-5}
|
parallel 6x-y=-12,\at (0,0)
|
parallel\:6x-y=-12,\at\:(0,0)
|
midpoint (-2,-1)(-2,4)
|
midpoint\:(-2,-1)(-2,4)
|
line x
|
line\:x
|
domain f(x)=(1/x)+4
|
domain\:f(x)=(\frac{1}{x})+4
|
extreme points f(x)=sin(10x)
|
extreme\:points\:f(x)=\sin(10x)
|
inverse f(x)=-5cos(6x)
|
inverse\:f(x)=-5\cos(6x)
|
periodicity f(x)=sin(0.25x)
|
periodicity\:f(x)=\sin(0.25x)
|
extreme points f(x)=2x^4+8x^3
|
extreme\:points\:f(x)=2x^{4}+8x^{3}
|
inverse f(x)= 7/(x+4)
|
inverse\:f(x)=\frac{7}{x+4}
|
inverse f(x)=(x+8)/(x-2)
|
inverse\:f(x)=\frac{x+8}{x-2}
|
domain ln(x)+ln(4-x)
|
domain\:\ln(x)+\ln(4-x)
|
midpoint (8,-3)(-5,-9)
|
midpoint\:(8,-3)(-5,-9)
|
inverse f(x)=sqrt(x+5)-1
|
inverse\:f(x)=\sqrt{x+5}-1
|
domain x^6-6/5 x^5
|
domain\:x^{6}-\frac{6}{5}x^{5}
|
domain f(x)=15-(12)/(x^4)
|
domain\:f(x)=15-\frac{12}{x^{4}}
|
domain f(x)=(sqrt(x)-5)^4+1
|
domain\:f(x)=(\sqrt{x}-5)^{4}+1
|
extreme points f(x)=-4t^2+6t-1
|
extreme\:points\:f(x)=-4t^{2}+6t-1
|
distance (3,2)(-3,-1)
|
distance\:(3,2)(-3,-1)
|
domain (x^2-9)/(x^2-2x-1)
|
domain\:\frac{x^{2}-9}{x^{2}-2x-1}
|
line (3,0)(0,4)
|
line\:(3,0)(0,4)
|
inverse (x-2)/(3x+7)
|
inverse\:\frac{x-2}{3x+7}
|
range f(x)=(2x^2+2x-4)/(x^2+x)
|
range\:f(x)=\frac{2x^{2}+2x-4}{x^{2}+x}
|
global extreme points-6x^3+9x^2+36x
|
global\:extreme\:points\:-6x^{3}+9x^{2}+36x
|
domain sqrt(3-2x-x^2)
|
domain\:\sqrt{3-2x-x^{2}}
|
range f(x)=-3/2 (1.5)^x
|
range\:f(x)=-\frac{3}{2}(1.5)^{x}
|
inverse f(x)=2-x-x^2
|
inverse\:f(x)=2-x-x^{2}
|
periodicity f(x)=cot(x+(pi)/4)
|
periodicity\:f(x)=\cot(x+\frac{\pi}{4})
|
domain 1/(sqrt(12-t))
|
domain\:\frac{1}{\sqrt{12-t}}
|
extreme points f(x)=xsqrt(4-x)
|
extreme\:points\:f(x)=x\sqrt{4-x}
|
critical points f(x)=(9x)/(sqrt(x-8)),[10,40]
|
critical\:points\:f(x)=\frac{9x}{\sqrt{x-8}},[10,40]
|
range y=2^{-x}+1
|
range\:y=2^{-x}+1
|
domain (x^2-1)/(4x+16)
|
domain\:\frac{x^{2}-1}{4x+16}
|
asymptotes f(x)=(x+3)/(x+1)
|
asymptotes\:f(x)=\frac{x+3}{x+1}
|
inverse f(x)= 1/(4pi^2)x(4pi-x)
|
inverse\:f(x)=\frac{1}{4\pi^{2}}x(4\pi-x)
|
distance (0,0)(1,2)
|
distance\:(0,0)(1,2)
|
asymptotes f(x)=(1-x^2)/x
|
asymptotes\:f(x)=\frac{1-x^{2}}{x}
|
range 2(x-3)+5
|
range\:2(x-3)+5
|
domain f(x)=(e^x)/(sqrt(1-e^x))
|
domain\:f(x)=\frac{e^{x}}{\sqrt{1-e^{x}}}
|
range 1/4 tan(1/8 x)-2
|
range\:\frac{1}{4}\tan(\frac{1}{8}x)-2
|
extreme points-3x^3+5x^2+16x
|
extreme\:points\:-3x^{3}+5x^{2}+16x
|
asymptotes (x^2+1)/(x^2-1)
|
asymptotes\:\frac{x^{2}+1}{x^{2}-1}
|
inverse (2x)/(x+1)
|
inverse\:\frac{2x}{x+1}
|
domain (x^2-4)/(x+3)
|
domain\:\frac{x^{2}-4}{x+3}
|
slope 2y+3x=7
|
slope\:2y+3x=7
|
line (1,1)(8,-3/4)
|
line\:(1,1)(8,-\frac{3}{4})
|
intercepts (x-9)/(x-3)
|
intercepts\:\frac{x-9}{x-3}
|
shift sin(x+pi)
|
shift\:\sin(x+\pi)
|
intercepts-16x^2+16x+480
|
intercepts\:-16x^{2}+16x+480
|
extreme points sin^2(x),0<= x<= pi
|
extreme\:points\:\sin^{2}(x),0\le\:x\le\:\pi
|
asymptotes f(x)=(x-2)/((x+2)(x-2))
|
asymptotes\:f(x)=\frac{x-2}{(x+2)(x-2)}
|
asymptotes f(x)=3
|
asymptotes\:f(x)=3
|
domain f(x)=x^2-11x+13
|
domain\:f(x)=x^{2}-11x+13
|
extreme points f(x)=t^2-7t+10
|
extreme\:points\:f(x)=t^{2}-7t+10
|
inverse f(x)=(4x+7)/(x+4)
|
inverse\:f(x)=\frac{4x+7}{x+4}
|
symmetry-(x+1)^2-4
|
symmetry\:-(x+1)^{2}-4
|
slope 4x+5y=-30
|
slope\:4x+5y=-30
|
line (5,0)(8,6)
|
line\:(5,0)(8,6)
|
domain (sqrt(4x))/(x+9)
|
domain\:\frac{\sqrt{4x}}{x+9}
|
slope 2x-3y=8
|
slope\:2x-3y=8
|
inverse f(x)=(3x)/5+3
|
inverse\:f(x)=\frac{3x}{5}+3
|
extreme points f(x)=sqrt(x^2-8x+20)
|
extreme\:points\:f(x)=\sqrt{x^{2}-8x+20}
|
1/(x-1)
|
\frac{1}{x-1}
|
inverse f(x)=2x^2+16x+5
|
inverse\:f(x)=2x^{2}+16x+5
|
inverse f(x)=((x^7))/3+3
|
inverse\:f(x)=\frac{(x^{7})}{3}+3
|
domain f(x)=-x^4-2x^3+10x^2+4x-16
|
domain\:f(x)=-x^{4}-2x^{3}+10x^{2}+4x-16
|
asymptotes 5csc(10x)
|
asymptotes\:5\csc(10x)
|
domain f(x)=-x^2+4x-1
|
domain\:f(x)=-x^{2}+4x-1
|
inflection points x^3-6x^2-36x
|
inflection\:points\:x^{3}-6x^{2}-36x
|
critical points x^{3/2}-3x^{5/2}
|
critical\:points\:x^{\frac{3}{2}}-3x^{\frac{5}{2}}
|
symmetry 2x^2+32x+136
|
symmetry\:2x^{2}+32x+136
|
intercepts f(x)=(sqrt(x))/2
|
intercepts\:f(x)=\frac{\sqrt{x}}{2}
|
domain f(x)=(4x^2-1)/(|2x+1|)
|
domain\:f(x)=\frac{4x^{2}-1}{|2x+1|}
|
inverse f(x)= x/(7-x)
|
inverse\:f(x)=\frac{x}{7-x}
|
inverse f(x)=8-\sqrt[3]{x}
|
inverse\:f(x)=8-\sqrt[3]{x}
|
inverse f(x)=(5+7x)/2
|
inverse\:f(x)=\frac{5+7x}{2}
|
line (2.8425,-0.812),(2.8697,-0.968)
|
line\:(2.8425,-0.812),(2.8697,-0.968)
|
inflection points (x+2)/(2x+1)
|
inflection\:points\:\frac{x+2}{2x+1}
|
domain f(x)=(sqrt(x-5))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x-5}}{x-6}
|