critical 9-x^2
|
critical\:9-x^{2}
|
critical f(x)=x^2-8x+16
|
critical\:f(x)=x^{2}-8x+16
|
critical f(x)=x^3-3x^2-24x+5
|
critical\:f(x)=x^{3}-3x^{2}-24x+5
|
critical f(x)=x^3-3x^2-24x+4
|
critical\:f(x)=x^{3}-3x^{2}-24x+4
|
extreme points f(x)=(e^x)/((5x)),x> 0
|
extreme\:points\:f(x)=\frac{e^{x}}{(5x)},x\gt\:0
|
critical f(x)=(x+4)(x+1)^2
|
critical\:f(x)=(x+4)(x+1)^{2}
|
critical f(x)=x^2-8ln(x)
|
critical\:f(x)=x^{2}-8\ln(x)
|
critical f(x)=x^3+(16)/x
|
critical\:f(x)=x^{3}+\frac{16}{x}
|
critical (x^2+12)(144-x^2)
|
critical\:(x^{2}+12)(144-x^{2})
|
critical f(x,y)=xy+ln(x)+8y^2
|
critical\:f(x,y)=xy+\ln(x)+8y^{2}
|
critical f(x)=(x+1)^3
|
critical\:f(x)=(x+1)^{3}
|
critical f(x)=(5-2x)^4+8
|
critical\:f(x)=(5-2x)^{4}+8
|
critical f(x)=2x^3+xy^2+5x^2+y^2
|
critical\:f(x)=2x^{3}+xy^{2}+5x^{2}+y^{2}
|
f(x)=In(2-x)
|
f(x)=In(2-x)
|
critical f(x,y)=2x^3-6x+6xy^2
|
critical\:f(x,y)=2x^{3}-6x+6xy^{2}
|
asymptotes f(x)= x/(x^3-1)
|
asymptotes\:f(x)=\frac{x}{x^{3}-1}
|
critical f(x)=(x^4-11x^2+4)/((x^2-4)^2)
|
critical\:f(x)=\frac{x^{4}-11x^{2}+4}{(x^{2}-4)^{2}}
|
critical x^3-x^2-2x
|
critical\:x^{3}-x^{2}-2x
|
critical x^2+x+1
|
critical\:x^{2}+x+1
|
critical f(x)=2x-3x^2
|
critical\:f(x)=2x-3x^{2}
|
critical f(x,y)= 3/4 y^2+1/24 y^3-1/32 y^4-x^2
|
critical\:f(x,y)=\frac{3}{4}y^{2}+\frac{1}{24}y^{3}-\frac{1}{32}y^{4}-x^{2}
|
critical 4/((1-4x^2)^2)
|
critical\:\frac{4}{(1-4x^{2})^{2}}
|
critical ((x^2+1))/((x^2-1))
|
critical\:\frac{(x^{2}+1)}{(x^{2}-1)}
|
critical y=e^{x^2-5x-1},-5<= x<= 5
|
critical\:y=e^{x^{2}-5x-1},-5\le\:x\le\:5
|
critical f(x)=(3x)/(x^2-1)
|
critical\:f(x)=\frac{3x}{x^{2}-1}
|
critical f(x)=4(x-2)^{2/3}
|
critical\:f(x)=4(x-2)^{\frac{2}{3}}
|
range (8x-3)/x
|
range\:\frac{8x-3}{x}
|
critical f(x)=\sqrt[3]{x^2-16}
|
critical\:f(x)=\sqrt[3]{x^{2}-16}
|
critical f(x)=(x+3)/(x-3)
|
critical\:f(x)=\frac{x+3}{x-3}
|
critical f(x)=2x^3-4x^2-3
|
critical\:f(x)=2x^{3}-4x^{2}-3
|
critical f(x,y)=(x^4)/4+(y^4)/4
|
critical\:f(x,y)=\frac{x^{4}}{4}+\frac{y^{4}}{4}
|
critical f(x)=xe^{-5x}
|
critical\:f(x)=xe^{-5x}
|
critical f(x)=-216*x+2*x^3+6*x*y^2-3*y^2
|
critical\:f(x)=-216\cdot\:x+2\cdot\:x^{3}+6\cdot\:x\cdot\:y^{2}-3\cdot\:y^{2}
|
critical f(x)=((x+2)/(x-3))
|
critical\:f(x)=(\frac{x+2}{x-3})
|
critical (x^2+2)/(x^2-4)
|
critical\:\frac{x^{2}+2}{x^{2}-4}
|
critical f(x)=x^2y-xy^2
|
critical\:f(x)=x^{2}y-xy^{2}
|
f(x,y)=2x^3+3y^3-6y-81y+500
|
f(x,y)=2x^{3}+3y^{3}-6y-81y+500
|
critical points f(x)= 2/3 x^3-2x^2-70x-4
|
critical\:points\:f(x)=\frac{2}{3}x^{3}-2x^{2}-70x-4
|
critical f(x)=x^2-12x
|
critical\:f(x)=x^{2}-12x
|
critical 2y
|
critical\:2y
|
critical f(x)=2x^3+x^2+8x
|
critical\:f(x)=2x^{3}+x^{2}+8x
|
critical 6x^{2/3}-4x
|
critical\:6x^{\frac{2}{3}}-4x
|
critical 6x
|
critical\:6x
|
critical f(x)=-11*y^2+(x+16)^2+1
|
critical\:f(x)=-11\cdot\:y^{2}+(x+16)^{2}+1
|
critical (-x^2+4)/((x^2+4)^2)
|
critical\:\frac{-x^{2}+4}{(x^{2}+4)^{2}}
|
critical f(x)=4θ-tan(θ)
|
critical\:f(x)=4θ-\tan(θ)
|
critical f(x)=((2x-1))/(x+1)
|
critical\:f(x)=\frac{(2x-1)}{x+1}
|
f(x,y)=(x^2)/2-xy^3+x
|
f(x,y)=\frac{x^{2}}{2}-xy^{3}+x
|
inverse f(x)= 1/4 (x+3)^2-5>=-3
|
inverse\:f(x)=\frac{1}{4}(x+3)^{2}-5\ge\:-3
|
critical-(2x(-x^2+27))/((x^2+9)^3)
|
critical\:-\frac{2x(-x^{2}+27)}{(x^{2}+9)^{3}}
|
critical f(x)=x^{3/2}(3x+10)
|
critical\:f(x)=x^{\frac{3}{2}}(3x+10)
|
critical (e^x(-4e^x+e^{2x}+1))/((1+e^x)^4)
|
critical\:\frac{e^{x}(-4e^{x}+e^{2x}+1)}{(1+e^{x})^{4}}
|
critical (2(x^2-9))/(x^2-4)
|
critical\:\frac{2(x^{2}-9)}{x^{2}-4}
|
critical f(x)=(1-x)/((x+1)^3)
|
critical\:f(x)=\frac{1-x}{(x+1)^{3}}
|
critical f(x)=(x-9)e^x
|
critical\:f(x)=(x-9)e^{x}
|
g(x,y)=(xy)/(x^2+y^2)
|
g(x,y)=\frac{xy}{x^{2}+y^{2}}
|
critical f(x)=(x-1)^{4/5}
|
critical\:f(x)=(x-1)^{\frac{4}{5}}
|
critical f(x)=x^{2/3}(1-x)
|
critical\:f(x)=x^{\frac{2}{3}}(1-x)
|
critical x^{3/2}(3x+10)
|
critical\:x^{\frac{3}{2}}(3x+10)
|
domain f(x)= 1/(x^2+4)-1/(x^2-4)
|
domain\:f(x)=\frac{1}{x^{2}+4}-\frac{1}{x^{2}-4}
|
domain f(x)= 1/(x+14)
|
domain\:f(x)=\frac{1}{x+14}
|
critical f(x)=3+2x-x^2
|
critical\:f(x)=3+2x-x^{2}
|
critical f(x)= x/(x^2+6x+5)
|
critical\:f(x)=\frac{x}{x^{2}+6x+5}
|
critical (x^2)/(x^2+2x-15)
|
critical\:\frac{x^{2}}{x^{2}+2x-15}
|
critical 1-2x^2
|
critical\:1-2x^{2}
|
critical f(x,y)=x^2+3xy+y^2-15x-10y+11
|
critical\:f(x,y)=x^{2}+3xy+y^{2}-15x-10y+11
|
critical f(x)=(x-2)^{2/3}
|
critical\:f(x)=(x-2)^{\frac{2}{3}}
|
critical f(x)=2x^2+16x+27
|
critical\:f(x)=2x^{2}+16x+27
|
critical f(x)=2-x-x^3
|
critical\:f(x)=2-x-x^{3}
|
critical-x^2+5x-6
|
critical\:-x^{2}+5x-6
|
critical y= x/(x^2+3x+2)
|
critical\:y=\frac{x}{x^{2}+3x+2}
|
domain f(x)=sqrt((-3x+27)/(x-8))
|
domain\:f(x)=\sqrt{\frac{-3x+27}{x-8}}
|
critical f(x)=x+5
|
critical\:f(x)=x+5
|
f(x,y)=6x^2+5x^3y^4-10y^5
|
f(x,y)=6x^{2}+5x^{3}y^{4}-10y^{5}
|
critical \sqrt[3]{x+2}-5
|
critical\:\sqrt[3]{x+2}-5
|
critical f(x)=x-2
|
critical\:f(x)=x-2
|
critical f(x)=(3x^2)/(x-7)
|
critical\:f(x)=\frac{3x^{2}}{x-7}
|
critical f(x,y)=x^2y^2-2/3 x^3-2/3 y^3
|
critical\:f(x,y)=x^{2}y^{2}-\frac{2}{3}x^{3}-\frac{2}{3}y^{3}
|
critical-x^4+8x^2+2
|
critical\:-x^{4}+8x^{2}+2
|
critical x^2+y^2+x^2y+4
|
critical\:x^{2}+y^{2}+x^{2}y+4
|
critical f(x)=-4x^3+9x^2-4x
|
critical\:f(x)=-4x^{3}+9x^{2}-4x
|
critical f(x)=x^2-24x+6
|
critical\:f(x)=x^{2}-24x+6
|
range (1/2 x-1)^2-2
|
range\:(\frac{1}{2}x-1)^{2}-2
|
f(x)=In(xsqrt(x^2-1))
|
f(x)=In(x\sqrt{x^{2}-1})
|
critical 4x+sin(4x)
|
critical\:4x+\sin(4x)
|
critical f(x)=sin(5x)
|
critical\:f(x)=\sin(5x)
|
critical f(x,y)=2x^2-xy-3y^2-3x+7y
|
critical\:f(x,y)=2x^{2}-xy-3y^{2}-3x+7y
|
critical y=3x^4+4x^3+x
|
critical\:y=3x^{4}+4x^{3}+x
|
f(x,y)=x^3-3xy^2+12y^2
|
f(x,y)=x^{3}-3xy^{2}+12y^{2}
|
critical f(x)=x*e^x
|
critical\:f(x)=x\cdot\:e^{x}
|
critical e^{x^2-8x-1}
|
critical\:e^{x^{2}-8x-1}
|
critical y=x^4-8x^2+3
|
critical\:y=x^{4}-8x^{2}+3
|
critical f(x)=x^7e^{5x}
|
critical\:f(x)=x^{7}e^{5x}
|
inverse f(x)=\sqrt[3]{4x}
|
inverse\:f(x)=\sqrt[3]{4x}
|
critical f(x)=-3x^4-8x^3-6x^2+8
|
critical\:f(x)=-3x^{4}-8x^{3}-6x^{2}+8
|
critical f(x)=((x+6))/(x^2)
|
critical\:f(x)=\frac{(x+6)}{x^{2}}
|
critical f(x)=((x^2)/(sqrt(x+1)))
|
critical\:f(x)=(\frac{x^{2}}{\sqrt{x+1}})
|
critical f(x)=x^2+y^2-6=0
|
critical\:f(x)=x^{2}+y^{2}-6=0
|
critical f(x)=2x^3-3x^2-12x+8
|
critical\:f(x)=2x^{3}-3x^{2}-12x+8
|
critical f(x)=2x^3-3x^2-12x+4
|
critical\:f(x)=2x^{3}-3x^{2}-12x+4
|