derivative f(x)=sin^2(x)
|
derivative\:f(x)=\sin^{2}(x)
|
polar(0,2)
|
polar(0,2)
|
derivative y=x-3sin(x)
|
derivative\:y=x-3\sin(x)
|
slope 2x+5y=10
|
slope\:2x+5y=10
|
derivative y=(x+1)/(sqrt(x))
|
derivative\:y=\frac{x+1}{\sqrt{x}}
|
derivative x^3e^x
|
derivative\:x^{3}e^{x}
|
derivative f(x)= 1/(x^2+1)
|
derivative\:f(x)=\frac{1}{x^{2}+1}
|
line(1,7)(-2,3)
|
line(1,7)(-2,3)
|
derivative (dy)/(dx)x^2-y^2=16
|
derivative\:\frac{dy}{dx}x^{2}-y^{2}=16
|
θ=(5π)/4
|
θ=\frac{5π}{4}
|
derivative f(x)=sqrt(3/2 x-5)
|
derivative\:f(x)=\sqrt{\frac{3}{2}x-5}
|
normal f(x)=x^2+2,\at x=2
|
normal\:f(x)=x^{2}+2,\at\:x=2
|
T=2πsqrt(l/g)
|
T=2π\sqrt{\frac{l}{g}}
|
tangent y=6^x,\at x=1
|
tangent\:y=6^{x},\at\:x=1
|
derivative f(x)= x/(1+x^2)
|
derivative\:f(x)=\frac{x}{1+x^{2}}
|
c=π8
|
c=π8
|
slope f(x)=x^2
|
slope\:f(x)=x^{2}
|
midpoint(-3,-7)(3,-5)
|
midpoint(-3,-7)(3,-5)
|
midpoint(-5,6)(3,4)
|
midpoint(-5,6)(3,4)
|
distance(-4,6)(3,-7)
|
distance(-4,6)(3,-7)
|
m=(9-4)/(-1-(-1))
|
m=\frac{9-4}{-1-(-1)}
|
derivative f(x)=x^2-3x+7
|
derivative\:f(x)=x^{2}-3x+7
|
tangent 30
|
tangent\:30
|
polar(-2,2sqrt(3))
|
polar(-2,2\sqrt{3})
|
derivative f(x)=cos(x^2)
|
derivative\:f(x)=\cos(x^{2})
|
derivative f(x)=xsqrt(x^2+19)
|
derivative\:f(x)=x\sqrt{x^{2}+19}
|
tangent y=sin(2x),\at x= π/3
|
tangent\:y=\sin(2x),\at\:x=\frac{π}{3}
|
derivative f(x)=x
|
derivative\:f(x)=x
|
derivative y^{\prime}x-y=3
|
derivative\:y^{\prime\:}x-y=3
|
slope 1/2
|
slope\:\frac{1}{2}
|
derivative f(x)=-2x
|
derivative\:f(x)=-2x
|
midpoint(-3,-5)(2,5)
|
midpoint(-3,-5)(2,5)
|
tangent f(x)=x^2,\at x=2
|
tangent\:f(x)=x^{2},\at\:x=2
|
tangent x^2
|
tangent\:x^{2}
|
slope 2x-3y=9
|
slope\:2x-3y=9
|
slope 2x+3y=9
|
slope\:2x+3y=9
|
derivative f(x)=x+sqrt(x)
|
derivative\:f(x)=x+\sqrt{x}
|
slope y=-2
|
slope\:y=-2
|
derivative f(x)=3^x
|
derivative\:f(x)=3^{x}
|
cartesian(-sqrt(2), π/4)
|
cartesian(-\sqrt{2},\frac{π}{4})
|
derivative xe^{x^2}
|
derivative\:xe^{x^{2}}
|
θ= π/4
|
θ=\frac{π}{4}
|
midpoint(3,-1)(7,-5)
|
midpoint(3,-1)(7,-5)
|
polar(sqrt(3),-1)
|
polar(\sqrt{3},-1)
|
derivative y=ln(5x)
|
derivative\:y=\ln(5x)
|
polar(3,3)
|
polar(3,3)
|
slope-3x-4y=8
|
slope\:-3x-4y=8
|
derivative f(x)=(3x-2)^2
|
derivative\:f(x)=(3x-2)^{2}
|
derivative 10sqrt(x)+4x^{3/4}
|
derivative\:10\sqrt{x}+4x^{\frac{3}{4}}
|
x=-4
|
x=-4
|
derivative f(x)=0
|
derivative\:f(x)=0
|
integral 1/x
|
integral\:\frac{1}{x}
|
θ=(2π)/3
|
θ=\frac{2π}{3}
|
cartesian(-2,(3π)/4)
|
cartesian(-2,\frac{3π}{4})
|
integral sec(x)
|
integral\:\sec(x)
|
slope x=3
|
slope\:x=3
|
derivative f(x)=sin(x)cos(x)
|
derivative\:f(x)=\sin(x)\cos(x)
|
z=1
|
z=1
|
midpoint(-3,5)(1,9)
|
midpoint(-3,5)(1,9)
|
slope(-22,13)\land(50,89)
|
slope(-22,13)\land(50,89)
|
cartesian(sqrt(2), π/4)
|
cartesian(\sqrt{2},\frac{π}{4})
|
derivative 2x^3
|
derivative\:2x^{3}
|
r=2
|
r=2
|
slope-3/4
|
slope\:-\frac{3}{4}
|
derivative sin(x)cos(x)
|
derivative\:\sin(x)\cos(x)
|
cartesian(2,(2π)/3)
|
cartesian(2,\frac{2π}{3})
|
polar(-1,-sqrt(3))
|
polar(-1,-\sqrt{3})
|
derivative f(x)=4^x
|
derivative\:f(x)=4^{x}
|
tangent y=x^3-2x^2+5,\at(2,5)
|
tangent\:y=x^{3}-2x^{2}+5,\at(2,5)
|
midpoint(5,8)(-1,-4)
|
midpoint(5,8)(-1,-4)
|
polar x^2+(y-5)^2=25
|
polar\:x^{2}+(y-5)^{2}=25
|
slope 2x-3y=6
|
slope\:2x-3y=6
|
derivative f(x)=ln(sin^2(x))
|
derivative\:f(x)=\ln(\sin^{2}(x))
|
slope(-9,-6)(5,-1)
|
slope(-9,-6)(5,-1)
|
integral cos(x)
|
integral\:\cos(x)
|
cartesian(4,(2π)/3)
|
cartesian(4,\frac{2π}{3})
|
line(-2,-4),(3,6)
|
line(-2,-4),(3,6)
|
cartesian(2,0)
|
cartesian(2,0)
|
slopeintercept x-y=-2
|
slopeintercept\:x-y=-2
|
slope 1+ln(2x-1)
|
slope\:1+\ln(2x-1)
|
m^2
|
m^{2}
|
derivative y=sin(2x)+cos^2(x)
|
derivative\:y=\sin(2x)+\cos^{2}(x)
|
slope 4x+5y=31
|
slope\:4x+5y=31
|
derivative f(x)=4sqrt(x)
|
derivative\:f(x)=4\sqrt{x}
|
derivative f(x)= 2/x
|
derivative\:f(x)=\frac{2}{x}
|
polar(-sqrt(3),-1)
|
polar(-\sqrt{3},-1)
|
line(5,1),(5,3)
|
line(5,1),(5,3)
|
derivative y=5.4^x
|
derivative\:y=5.4^{x}
|
midpoint(10,6)(-4,8)
|
midpoint(10,6)(-4,8)
|
derivative f(x)=x^2+3
|
derivative\:f(x)=x^{2}+3
|
derivative \sqrt[3]{x}-1
|
derivative\:\sqrt[3]{x}-1
|
x=-7
|
x=-7
|
midpoint(15,-17)(-8,-8)
|
midpoint(15,-17)(-8,-8)
|
polar(-2,-2)
|
polar(-2,-2)
|
derivative y=sin(tan(2x))
|
derivative\:y=\sin(\tan(2x))
|
slope-2x+5
|
slope\:-2x+5
|
polar(-4sqrt(3),4)
|
polar(-4\sqrt{3},4)
|
slope y=3
|
slope\:y=3
|
derivative y=sin(x)cos(x)
|
derivative\:y=\sin(x)\cos(x)
|
tangent f(x)= 3/4 x^4-4/3 x^3+5/2
|
tangent\:f(x)=\frac{3}{4}x^{4}-\frac{4}{3}x^{3}+\frac{5}{2}
|