We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Precalculus II

Solution to Finding Limits: Properties of Limits

Solutions to Try Its

1. 26 2. 59 3. 10 4. 64-64 5. 3-3 6. 150-\frac{1}{50} 7. 18-\frac{1}{8} 8. 232\sqrt{3} 9. 1-1

Solutions to Odd-Numbered Exercises

1. If ff is a polynomial function, the limit of a polynomial function as xx approaches aa will always be f(a)f\left(a\right). 3. It could mean either (1) the values of the function increase or decrease without bound as xx approaches cc, or (2) the left and right-hand limits are not equal. 5. 103\frac{-10}{3} 7. 6 9. 12\frac{1}{2} 11. 6 13. does not exist 15. 12-12 17. 510-\frac{\sqrt{5}}{10} 19. 108-108 21. 1 23. 6 25. 1 27. 1 29. does not exist 31. 6+56+\sqrt{5} 33. 35\frac{3}{5} 35. 0 37. 3-3 39. does not exist; right-hand limit is not the same as the left-hand limit. 41. Limit does not exist; limit approaches infinity. 43. 4x+2h4x+2h 45. 2x+h+42x+h+4 47. cos(x+h)cos(x)h\frac{\cos \left(x+h\right)-\cos \left(x\right)}{h} 49. 1x(x+h)\frac{-1}{x\left(x+h\right)} 51. 1x+h+x\frac{-1}{\sqrt{x+h}+\sqrt{x}} 53. f(x)=x2+5x+6x+3f\left(x\right)=\frac{{x}^{2}+5x+6}{x+3} 55. does not exist 57. 52

Licenses & Attributions