التطور للاحترافية
للموقع
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
حلول
آلة حاسبة لتكاملات
آلة حاسبة للمشتقّة
آلة حاسبة للجبر
آلة حاسبة للمصفوفات
أكثر...
الرسوم البيانية
الرسم البياني الخطي
الرسم البياني الأسي
الرسم البياني التربيعي
الرسم البياني الجيبية
أكثر...
حاسبات
حاسبة مؤشر كتلة الجسم
حاسبة الفائدة المركبة
حاسبة النسبة المئوية
حاسبة التسارع
أكثر...
الهندسة
حاسبة نظرية فيثاغورس
آلة حاسبة لمساحة الدائرة
حاسبة المثلثات المتساوية الساقين
حاسبة المثلثات
أكثر...
أدوات
دفتر
مجموعات
أوراق غشّ
ورقة عمل
أدلة الدراسة
تمرّن
التحقق من الحل
ar
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
قم بتحديث التقنيّة
مسائل مشهورة
مواضيع
ما قبل الجبر
الجبر
مشاكل الكلمات
Functions & Graphing
الهندسة
علم المثلثات
قبل التفاضل والتكامل
حساب التفاضل والتكامل
إحصائيات
مسائل حساب التفاضل والتكامل مشهورة
derivative y=arcsin(x+1)
derivative
y
=
arcsin
(
x
+
1
)
integral of 2/3 x^{3/2}-9sin(x)
∫
2
3
x
3
2
−
9
sin
(
x
)
dx
(\partial)/(\partial x)(7xsin(y-z))
∂
∂
x
(
7
x
sin
(
y
−
z
)
)
limit as x approaches 8 of (sqrt(7+\sqrt[3]{x)}-3)/(x-8)
lim
x
→
8
(
√
7
+
3
√
x
−
3
x
−
8
)
integral of 3x^2-2y^2
∫
3
x
2
−
2
y
2
dx
integral of x/(1-2x)
∫
x
1
−
2
x
dx
limit as x approaches 1 of sqrt(3+f(x))
lim
x
→
1
(
√
3
+
f
(
x
)
)
integral of t^2e^{-4t}
∫
t
2
e
−
4
t
dt
derivative of (4x/(7x-2))
d
dx
(
4
x
7
x
−
2
)
inverselaplace 1/((2s+1)s)
inverselaplace
1
(
2
s
+
1
)
s
integral of x^2ln(9x)
∫
x
2
ln
(
9
x
)
dx
derivative of (tan^2(x)/(tan(x^2)))
d
dx
(
tan
2
(
x
)
tan
(
x
2
)
)
sqrt(x)(dy)/(dx)=e^{7y+sqrt(x)}
√
x
dy
dx
=
e
7
y
+
√
x
sum from n=1 to infinity of 5(-1/6)^{5n}
∑
n
=
1
∞
5
(
−
1
6
)
5
n
derivative f(x)=(2x^2-x-1)/(2x+2)
derivative
f
(
x
)
=
2
x
2
−
x
−
1
2
x
+
2
limit as x approaches 0+of x^{20x}
lim
x
→
0
+
(
x
2
0
x
)
derivative of 7x^4cot(x)
d
dx
(
7
x
4
cot
(
x
)
)
xydx-(1+x^2)dy=0
xydx
−
(
1
+
x
2
)
dy
=
0
x''
x
′
′
(dy)/(dx)+3y=40
dy
dx
+
3
y
=
4
0
derivative of sqrt(x)(2x+4)
d
dx
(
√
x
(
2
x
+
4
)
)
limit as x approaches 7 of (x+6)/(x+1)
lim
x
→
7
(
x
+
6
x
+
1
)
tangent (x^3+2x)^3,\at x=4
tangent
(
x
3
+
2
x
)
3
,
at
x
=
4
integral from 0 to 2 of x^6
∫
0
2
x
6
dx
integral of xcos(4pi)x^2
∫
x
cos
(
4
π
)
x
2
dx
derivative of (x^2+x+2/(2x))
d
dx
(
x
2
+
x
+
2
2
x
)
area y=2x^2,y=2x+6
area
y
=
2
x
2
,
y
=
2
x
+
6
derivative ln(x)
derivative
ln
(
x
)
derivative of (e^x-e^{-x}/5)
d
dx
(
e
x
−
e
−
x
5
)
(xdy)/(dx)=y+sqrt(x^2-y^2)
xdy
dx
=
y
+
√
x
2
−
y
2
integral from-1/4 to 1/4 of 1/(1-x^2)
∫
−
1
4
1
4
1
1
−
x
2
dx
laplacetransform-9t^2
laplacetransform
−
9
t
2
integral of (3x)/(1+x^2)
∫
3
x
1
+
x
2
dx
integral of (-2sqrt(x))
∫
(
−
2
√
x
)
dx
(\partial)/(\partial x)(x+y^3)
∂
∂
x
(
x
+
y
3
)
(\partial)/(\partial x)(2yx-3y+y^2)
∂
∂
x
(
2
yx
−
3
y
+
y
2
)
ye^{xy}dx+xe^{xy}dy=0
ye
xy
dx
+
xe
xy
dy
=
0
derivative of a/(bx^2)
d
dx
(
a
bx
2
)
derivative 2x
derivative
2
x
inverselaplace ((s-10))/((s^2-2s-3))
inverselaplace
(
s
−
1
0
)
(
s
2
−
2
s
−
3
)
implicit (dy)/(dx),x^6-5xy^3=9xy
implicit
dy
dx
,
x
6
−
5
xy
3
=
9
xy
limit as x approaches 0 of arctan(1/x)
lim
x
→
0
(
arctan
(
1
x
)
)
integral of (x^2+2)/(x^3(x+1)^3)
∫
x
2
+
2
x
3
(
x
+
1
)
3
dx
area 1/((sqrt(1-7x))),-6<x<0
area
1
(
√
1
−
7
x
)
,
−
6
<
x
<
0
(\partial)/(\partial x)(4x^{-x^2-y^2-z^2})
∂
∂
x
(
4
x
−
x
2
−
y
2
−
z
2
)
integral of 7.9t-16.6
∫
7
.
9
t
−
1
6
.
6
dt
derivative of 1/((1-2x^{3/2)})
d
dx
(
1
(
1
−
2
x
)
3
2
)
(\partial)/(\partial x)(x^{2/3}+y^{2/3})
∂
∂
x
(
x
2
3
+
y
2
3
)
integral of 1/(sqrt(64+x^2))
∫
1
√
6
4
+
x
2
dx
f(x)=xcos(x)
f
(
x
)
=
x
cos
(
x
)
derivative of ln(x+2x)
d
dx
(
ln
(
x
)
+
2
x
)
taylor 1/(1+x^2),0
taylor
1
1
+
x
2
,
0
integral from 0 to 1 of (1-x^7)^2
∫
0
1
(
1
−
x
7
)
2
dx
derivative x^3-2x^2-4x+6
derivative
x
3
−
2
x
2
−
4
x
+
6
y^{''}-2y^'=x+2e^x,y(0)=18,y^'(0)= 31/4
y
′
′
−
2
y
′
=
x
+
2
e
x
,
y
(
0
)
=
1
8
,
y
′
(
0
)
=
3
1
4
derivative of 2cos(x+3sin(x))
d
dx
(
2
cos
(
x
)
+
3
sin
(
x
)
)
inverselaplace (s+3)/(s^2+2s+2)
inverselaplace
s
+
3
s
2
+
2
s
+
2
tangent 5x^2+8x-8
tangent
5
x
2
+
8
x
−
8
d/(du)(sqrt(u))
d
du
(
√
u
)
derivative of (6x-1(5x-2)^{-1})
d
dx
(
(
6
x
−
1
)
(
5
x
−
2
)
−
1
)
derivative of 2(x-1^2)
d
dx
(
2
(
x
−
1
)
2
)
y^{''}+4y^'+5y=-10x+3e^{-x}
y
′
′
+
4
y
′
+
5
y
=
−
1
0
x
+
3
e
−
x
limit as x approaches 3 of sqrt(x-2)
lim
x
→
3
(
√
x
−
2
)
integral of (sec^2(x))/x
∫
sec
2
(
x
)
x
dx
derivative f(x)=(x+5)/(x-5)
derivative
f
(
x
)
=
x
+
5
x
−
5
limit as x approaches-2 of x^2-4/(x+2)
lim
x
→
−
2
(
x
2
−
4
x
+
2
)
area y=cos(x),y=0.5,0<= x<= pi
area
y
=
cos
(
x
)
,
y
=
0
.
5
,
0
≤
x
≤
π
1296y^{''}+1368y^'+361y=0
1
2
9
6
y
′
′
+
1
3
6
8
y
′
+
3
6
1
y
=
0
x(dy)/(dx)=y+(x^2-2)^2
x
dy
dx
=
y
+
(
x
2
−
2
)
2
integral of sin^2(pix)cos^5(pix)
∫
sin
2
(
π
x
)
cos
5
(
π
x
)
dx
derivative \sqrt[3]{6+2x+x^3}
derivative
3
√
6
+
2
x
+
x
3
derivative of csc^2(1-2x)
d
dx
(
csc
2
(
1
−
2
x
)
)
limit as x approaches-1 of 3x^4-6x+1
lim
x
→
−
1
(
3
x
4
−
6
x
+
1
)
integral of 3x^2+2x
∫
3
x
2
+
2
xdx
limit as x approaches 2 of x^3-5x
lim
x
→
2
(
x
3
−
5
x
)
limit as x approaches-6+of sqrt(x+6)
lim
x
→
−
6
+
(
√
x
+
6
)
derivative of 3\sqrt[3]{x^2}-2x
d
dx
(
3
3
√
x
2
−
2
x
)
integral of 1/(sqrt(cos(x)+cos^2(x)))
∫
1
√
cos
(
x
)
+
cos
2
(
x
)
dx
(\partial)/(\partial z)(ln(1+xy)-z)
∂
∂
z
(
ln
(
1
+
xy
)
−
z
)
derivative f(x)=sqrt(x+8)
derivative
f
(
x
)
=
√
x
+
8
integral of tln(1+t)
∫
t
ln
(
1
+
t
)
dt
integral from-8 to 0 of (y/8+sqrt(y+9))
∫
−
8
0
(
y
8
+
√
y
+
9
)
dy
limit as x approaches infinity of x+9
lim
x
→
∞
(
x
+
9
)
integral of 1/(x^2+3x+3)
∫
1
x
2
+
3
x
+
3
dx
y''(x)-3y'(x)+2y= 1/(1+e^{-x)}
y
′
′
(
x
)
−
3
y
′
(
x
)
+
2
y
=
1
1
+
e
−
x
limit as x approaches 0 of-arcsin(x)
lim
x
→
0
(
−
arcsin
(
x
)
)
derivative of 5e^x+2/(\sqrt[3]{x})
d
dx
(
5
e
x
+
2
3
√
x
)
integral from 0 to 1 of 9cos((pit)/2)
∫
0
1
9
cos
(
π
t
2
)
dt
integral of 1/(sqrt(x^2+36))
∫
1
√
x
2
+
3
6
dx
derivative ln(3)
derivative
ln
(
3
)
derivative of ln(1/(1-x))
d
dx
(
ln
(
1
1
−
x
)
)
area y=4x^2,y=x^2+6
area
y
=
4
x
2
,
y
=
x
2
+
6
limit as x approaches 7 of x+2
lim
x
→
7
(
x
+
2
)
integral of xe^xln(x-1)
∫
xe
x
ln
(
x
−
1
)
dx
integral of (sin^5(ln(x)))/x
∫
sin
5
(
ln
(
x
)
)
x
dx
limit as x approaches 0 of (sqrt(5+x)-sqrt(5))/(2x)
lim
x
→
0
(
√
5
+
x
−
√
5
2
x
)
derivative f(t)=e^{7tsin(2t)}
derivative
f
(
t
)
=
e
7
t
sin
(
2
t
)
tangent f(x)=x(27x^{-2}+2),\at x=-3
tangent
f
(
x
)
=
x
(
2
7
x
−
2
+
2
)
,
at
x
=
−
3
(\partial)/(\partial x)((x-1)/(x+1))
∂
∂
x
(
x
−
1
x
+
1
)
integral from 0 to infinity of 1/(e^x-1)
∫
0
∞
1
e
x
−
1
dx
1
2
3
4
5
6
7
..
1823