range xln(x)
|
range\:x\ln(x)
|
critical points-0.0000005x^2+0.012x+19.21
|
critical\:points\:-0.0000005x^{2}+0.012x+19.21
|
domain f(x)=x^5-3x+5
|
domain\:f(x)=x^{5}-3x+5
|
inverse f(x)=6x(1-x)
|
inverse\:f(x)=6x(1-x)
|
slope intercept 2y-x=4
|
slope\:intercept\:2y-x=4
|
inverse f(x)=2x+34
|
inverse\:f(x)=2x+34
|
slope y=2-8x
|
slope\:y=2-8x
|
vertex f(x)=y=x^2+16x+71
|
vertex\:f(x)=y=x^{2}+16x+71
|
perpendicular y=-5x+7
|
perpendicular\:y=-5x+7
|
range f(x)=(3x-4)/(4x+9)
|
range\:f(x)=\frac{3x-4}{4x+9}
|
y=-1/2 x^2
|
y=-\frac{1}{2}x^{2}
|
vertex f(x)=y=x^2+7
|
vertex\:f(x)=y=x^{2}+7
|
range f(x)=3+sqrt(x)
|
range\:f(x)=3+\sqrt{x}
|
domain (x^2+5x)/(x^2+7x+10)
|
domain\:\frac{x^{2}+5x}{x^{2}+7x+10}
|
domain f(x)=(x-5)^2-1
|
domain\:f(x)=(x-5)^{2}-1
|
asymptotes f(x)=(x-3)/((x+4)^2)
|
asymptotes\:f(x)=\frac{x-3}{(x+4)^{2}}
|
extreme points f(\theta)=8sin^3(\theta)-8cos^2(\theta)
|
extreme\:points\:f(\theta)=8\sin^{3}(\theta)-8\cos^{2}(\theta)
|
critical points f(x)= x/(x^2-25)
|
critical\:points\:f(x)=\frac{x}{x^{2}-25}
|
inflection points y=2x^3-x^2+3
|
inflection\:points\:y=2x^{3}-x^{2}+3
|
slope 2x+7y=14
|
slope\:2x+7y=14
|
inverse f(x)=(9x-9)/(8x+1)
|
inverse\:f(x)=\frac{9x-9}{8x+1}
|
inverse 6x-3
|
inverse\:6x-3
|
inverse f(x)= 3/x-3
|
inverse\:f(x)=\frac{3}{x}-3
|
inverse f(x)=3+sqrt(5+x)
|
inverse\:f(x)=3+\sqrt{5+x}
|
extreme points f(x)=x^3-3x+1,[-3,3]
|
extreme\:points\:f(x)=x^{3}-3x+1,[-3,3]
|
inverse 23
|
inverse\:23
|
slope y=3x-3
|
slope\:y=3x-3
|
domain-x+3
|
domain\:-x+3
|
parity f(x)=(-x^3)/(5x^2+7)
|
parity\:f(x)=\frac{-x^{3}}{5x^{2}+7}
|
domain (x+2)/(x^2-4x+4)
|
domain\:\frac{x+2}{x^{2}-4x+4}
|
inverse (2x+2)/(x-1)
|
inverse\:\frac{2x+2}{x-1}
|
slope intercept 2x+3y=15
|
slope\:intercept\:2x+3y=15
|
critical points x*e^{-2x}
|
critical\:points\:x\cdot\:e^{-2x}
|
domain f(x)=2sqrt(x+9)-4
|
domain\:f(x)=2\sqrt{x+9}-4
|
range f(x)=sqrt(-x)
|
range\:f(x)=\sqrt{-x}
|
inverse f(x)=7x+12
|
inverse\:f(x)=7x+12
|
domain (x-9)/(x-2)
|
domain\:\frac{x-9}{x-2}
|
inverse 4x^4-3
|
inverse\:4x^{4}-3
|
midpoint (3,2),(-11,-3)
|
midpoint\:(3,2),(-11,-3)
|
domain f(x)= 2/(3x+12)
|
domain\:f(x)=\frac{2}{3x+12}
|
domain f(x)=sqrt(5-2x)
|
domain\:f(x)=\sqrt{5-2x}
|
midpoint (sqrt(2),sqrt(7))(sqrt(2),-sqrt(7))
|
midpoint\:(\sqrt{2},\sqrt{7})(\sqrt{2},-\sqrt{7})
|
inverse y=9-x^2
|
inverse\:y=9-x^{2}
|
range sqrt(x^2+1)
|
range\:\sqrt{x^{2}+1}
|
asymptotes f(x)=(3x^2-5x-2)/(x+3)
|
asymptotes\:f(x)=\frac{3x^{2}-5x-2}{x+3}
|
symmetry 3(x+1)(x-2)
|
symmetry\:3(x+1)(x-2)
|
range (4x-3)/(6-2x)
|
range\:\frac{4x-3}{6-2x}
|
inverse f(x)=(x+3)^2-1
|
inverse\:f(x)=(x+3)^{2}-1
|
domain y= 3/4-sqrt(2-x)
|
domain\:y=\frac{3}{4}-\sqrt{2-x}
|
extreme points f(x)=2x^2+x+2,[-1,3]
|
extreme\:points\:f(x)=2x^{2}+x+2,[-1,3]
|
extreme points f(x)=sin(x),0<= x< pi2
|
extreme\:points\:f(x)=\sin(x),0\le\:x\lt\:\pi2
|
parity (-x^2-x+6)/(x^2+3x-4)
|
parity\:\frac{-x^{2}-x+6}{x^{2}+3x-4}
|
inverse f(x)=2sqrt(x-1)+3
|
inverse\:f(x)=2\sqrt{x-1}+3
|
domain 11x
|
domain\:11x
|
range y=2e^x-1
|
range\:y=2e^{x}-1
|
range sqrt(x^2-4)
|
range\:\sqrt{x^{2}-4}
|
inverse f(x)=x^2-1,x<= 0
|
inverse\:f(x)=x^{2}-1,x\le\:0
|
line 10x-5y=25
|
line\:10x-5y=25
|
inverse f(x)=(7-10x)^{9/2}
|
inverse\:f(x)=(7-10x)^{\frac{9}{2}}
|
domain y=(3x-6)/(x-2)
|
domain\:y=\frac{3x-6}{x-2}
|
inverse f(x)=-1/2 y-5
|
inverse\:f(x)=-\frac{1}{2}y-5
|
extreme points x^4-4x^3
|
extreme\:points\:x^{4}-4x^{3}
|
critical points (x^3}{12}-\frac{x^2)/4
|
critical\:points\:\frac{x^{3}}{12}-\frac{x^{2}}{4}
|
y=x
|
y=x
|
slope-5/8 ,(0, 4/3)
|
slope\:-\frac{5}{8},(0,\frac{4}{3})
|
inverse f(x)=4-ln(x+2)
|
inverse\:f(x)=4-\ln(x+2)
|
extreme points f(x)=x^4e^x-2
|
extreme\:points\:f(x)=x^{4}e^{x}-2
|
asymptotes f(x)=-2/3 csc(2x)
|
asymptotes\:f(x)=-\frac{2}{3}\csc(2x)
|
asymptotes f(x)=x^4-8x^3
|
asymptotes\:f(x)=x^{4}-8x^{3}
|
domain f(x)=(2x)/(sqrt(x-3))
|
domain\:f(x)=\frac{2x}{\sqrt{x-3}}
|
intercepts f(x)=-x^2-9x-20
|
intercepts\:f(x)=-x^{2}-9x-20
|
asymptotes y=log_{10}(x)
|
asymptotes\:y=\log_{10}(x)
|
domain f(x)=ln(9-x^2)
|
domain\:f(x)=\ln(9-x^{2})
|
domain f(x)=sqrt(x+4)
|
domain\:f(x)=\sqrt{x+4}
|
symmetry y=x^2+4x-2
|
symmetry\:y=x^{2}+4x-2
|
domain arccos(1/(y^2))
|
domain\:\arccos(\frac{1}{y^{2}})
|
critical points f(x)=4x^3+6x^2-72x-9
|
critical\:points\:f(x)=4x^{3}+6x^{2}-72x-9
|
symmetry xy^2+10=0
|
symmetry\:xy^{2}+10=0
|
domain f(x)=sqrt(1/x+1)
|
domain\:f(x)=\sqrt{\frac{1}{x}+1}
|
asymptotes log_{4}(x)+2
|
asymptotes\:\log_{4}(x)+2
|
domain f(x)=x^2+8x-1
|
domain\:f(x)=x^{2}+8x-1
|
domain f(x)=sqrt(1-2^t)
|
domain\:f(x)=\sqrt{1-2^{t}}
|
extreme points f(x)= 1/3 x^3-1/2 x^2-2x+1
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x+1
|
critical points f(x)=x^2e^x
|
critical\:points\:f(x)=x^{2}e^{x}
|
domain y=sqrt(3-x)
|
domain\:y=\sqrt{3-x}
|
midpoint (-3,4)(5,-2)
|
midpoint\:(-3,4)(5,-2)
|
asymptotes f(x)=(x^2-64)/x
|
asymptotes\:f(x)=\frac{x^{2}-64}{x}
|
intercepts f(x)=-2(x+2)^2+4
|
intercepts\:f(x)=-2(x+2)^{2}+4
|
inverse f(x)=(2-x)^2
|
inverse\:f(x)=(2-x)^{2}
|
symmetry 3x^2-2
|
symmetry\:3x^{2}-2
|
inverse f(x)=(x^{1/5})/8
|
inverse\:f(x)=\frac{x^{\frac{1}{5}}}{8}
|
f(x)=10x^4-27x^3-19x^2+42x-36
|
f(x)=10x^{4}-27x^{3}-19x^{2}+42x-36
|
amplitude 3tan((pi)/2 x)+2
|
amplitude\:3\tan(\frac{\pi}{2}x)+2
|
domain ((sqrt(6-x))/(x^3-64))
|
domain\:(\frac{\sqrt{6-x}}{x^{3}-64})
|
critical points 3(x-1)^2
|
critical\:points\:3(x-1)^{2}
|
domain (4x)/(sqrt(x^2+15))
|
domain\:\frac{4x}{\sqrt{x^{2}+15}}
|
domain sin(e^{-t})
|
domain\:\sin(e^{-t})
|
inverse f(x)=3-9x
|
inverse\:f(x)=3-9x
|
midpoint (-3,-3)(2,5)
|
midpoint\:(-3,-3)(2,5)
|
slope y=3x-1
|
slope\:y=3x-1
|