التطور للاحترافية
للموقع
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
حلول
آلة حاسبة لتكاملات
آلة حاسبة للمشتقّة
آلة حاسبة للجبر
آلة حاسبة للمصفوفات
أكثر...
الرسوم البيانية
الرسم البياني الخطي
الرسم البياني الأسي
الرسم البياني التربيعي
الرسم البياني الجيبية
أكثر...
حاسبات
حاسبة مؤشر كتلة الجسم
حاسبة الفائدة المركبة
حاسبة النسبة المئوية
حاسبة التسارع
أكثر...
الهندسة
حاسبة نظرية فيثاغورس
آلة حاسبة لمساحة الدائرة
حاسبة المثلثات المتساوية الساقين
حاسبة المثلثات
أكثر...
أدوات
دفتر
مجموعات
أوراق غشّ
ورقة عمل
أدلة الدراسة
تمرّن
التحقق من الحل
ar
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
قم بتحديث التقنيّة
مسائل مشهورة
مواضيع
ما قبل الجبر
الجبر
مشاكل الكلمات
Functions & Graphing
الهندسة
علم المثلثات
قبل التفاضل والتكامل
حساب التفاضل والتكامل
إحصائيات
مسائل علم المثلثات مشهورة
prove ((cot(x)))/((csc(x)))=cos(x)
prove
(
cot
(
x
)
)
(
csc
(
x
)
)
=
cos
(
x
)
prove ((sec^2(t)))/(sec^2(t)-1)=csc^2(t)
prove
(
sec
2
(
t
)
)
sec
2
(
t
)
−
1
=
csc
2
(
t
)
prove sin^2(x)=cos(2x)+2
prove
sin
2
(
x
)
=
cos
(
2
x
)
+
2
prove 1+cos^2(x)=2-sin^2(x)
prove
1
+
cos
2
(
x
)
=
2
−
sin
2
(
x
)
prove sin^2(x)=cos(2x)-2
prove
sin
2
(
x
)
=
cos
(
2
x
)
−
2
prove (tan(θ)cot(θ))/(cos(θ))=sec(θ)
prove
tan
(
θ
)
cot
(
θ
)
cos
(
θ
)
=
sec
(
θ
)
prove 2(cos(θ-1))^2=cos^4(θ)-sin^4(θ)
prove
2
(
cos
(
θ
−
1
)
)
2
=
cos
4
(
θ
)
−
sin
4
(
θ
)
prove cos(x)= 15/17
prove
cos
(
x
)
=
1
5
1
7
prove csc(A)-sin(A)=(cos(A))(cot(A))
prove
csc
(
A
)
−
sin
(
A
)
=
(
cos
(
A
)
)
(
cot
(
A
)
)
prove (cos^2(x))/(cos^2(x))=1
prove
cos
2
(
x
)
cos
2
(
x
)
=
1
prove (1-sec(x))/(csc(x))=cos(x)(cot(x))
prove
1
−
sec
(
x
)
csc
(
x
)
=
cos
(
x
)
(
cot
(
x
)
)
prove csc(x)tan(x)sec(x)=sec^2(x)
prove
csc
(
x
)
tan
(
x
)
sec
(
x
)
=
sec
2
(
x
)
prove tan(x)sec^4(x)=(sin(x))/(cos^5(x))
prove
tan
(
x
)
sec
4
(
x
)
=
sin
(
x
)
cos
5
(
x
)
prove csc(x)+cot(x)sec(x)-1=tan(x)
prove
csc
(
x
)
+
cot
(
x
)
sec
(
x
)
−
1
=
tan
(
x
)
prove (3csc(x)-3sin(x))/(tan(x)-cot(x))=3cos^3(x)
prove
3
csc
(
x
)
−
3
sin
(
x
)
tan
(
x
)
−
cot
(
x
)
=
3
cos
3
(
x
)
prove 9cos(x)+6sin(x)=10
prove
9
cos
(
x
◦
)
+
6
sin
(
x
◦
)
=
1
0
prove (tan^2(A))/(sec^2(A))=sin^2(A)
prove
tan
2
(
A
)
sec
2
(
A
)
=
sin
2
(
A
)
prove 5cos^2(x)-2cos(x)-3-sin^2(x)=0
prove
5
cos
2
(
x
)
−
2
cos
(
x
)
−
3
−
sin
2
(
x
)
=
0
prove cos^4(a)+1-sin^4(a)=2cos^2(a)
prove
cos
4
(
a
)
+
1
−
sin
4
(
a
)
=
2
cos
2
(
a
)
prove 3-4cos^2(x)=(2sin(x)+1)(2sin(x)-1)
prove
3
−
4
cos
2
(
x
)
=
(
2
sin
(
x
)
+
1
)
(
2
sin
(
x
)
−
1
)
prove csc^2(θ)=(1/(sin(θ)))^2
prove
csc
2
(
θ
)
=
(
1
sin
(
θ
)
)
2
prove (1+tan(x))/(1+1/(tan(x)))=tan(x)
prove
1
+
tan
(
x
)
1
+
1
tan
(
x
)
=
tan
(
x
)
prove cos(2θ)= 1/(sec(2θ))
prove
cos
(
2
θ
)
=
1
sec
(
2
θ
)
prove (cos(3x)-cos(x))=-2sin(2x)sin(x)
prove
(
cos
(
3
x
)
−
cos
(
x
)
)
=
−
2
sin
(
2
x
)
sin
(
x
)
prove sec(pi/2-y)=csc(y)
prove
sec
(
π
2
−
y
)
=
csc
(
y
)
prove cos(2x-pi/2)=cos(pi/2-2x)
prove
cos
(
2
x
−
π
2
)
=
cos
(
π
2
−
2
x
)
prove sin(pi/2-x)cot(pi/2+x)=-sin(x)
prove
sin
(
π
2
−
x
)
cot
(
π
2
+
x
)
=
−
sin
(
x
)
prove cos(x)*csc(x)*tan(x)=1
prove
cos
(
x
)
·
csc
(
x
)
·
tan
(
x
)
=
1
prove cos^2(x) 1/(cos^2(x))=1
prove
cos
2
(
x
)
1
cos
2
(
x
)
=
1
prove (sin((4pi)/3))=-(sqrt(3))/2
prove
(
sin
(
4
π
3
)
)
=
−
√
3
2
prove sec(x)-sin^2(x)=cos(x)
prove
sec
(
x
)
−
sin
2
(
x
)
=
cos
(
x
)
prove cot^2(x)=csc^2(x)(1-sin^2(x))
prove
cot
2
(
x
)
=
csc
2
(
x
)
(
1
−
sin
2
(
x
)
)
prove (cos(2θ))/(-sin^2(θ))=cos^2(θ)
prove
cos
(
2
θ
)
−
sin
2
(
θ
)
=
cos
2
(
θ
)
prove sin(x)+cot(x)(cos(x))=csc(x)
prove
sin
(
x
)
+
cot
(
x
)
(
cos
(
x
)
)
=
csc
(
x
)
prove 1/(csc(x)-1)=(sin(x))/1
prove
1
csc
(
x
)
−
1
=
sin
(
x
)
1
prove sec(θ)cos(θ)csc(θ)=cot(θ)
prove
sec
(
θ
)
cos
(
θ
)
csc
(
θ
)
=
cot
(
θ
)
prove csc^2(x)(1-cos^2(x))=tan(420)
prove
csc
2
(
x
)
(
1
−
cos
2
(
x
)
)
=
tan
(
4
2
0
◦
)
prove cos(θ+30)-sin(θ+60)=-sin(θ)
prove
cos
(
θ
+
3
0
◦
)
−
sin
(
θ
+
6
0
◦
)
=
−
sin
(
θ
)
prove tan(a)*cot(a)=sin^2(a)+cos^2(a)
prove
tan
(
a
)
·
cot
(
a
)
=
sin
2
(
a
)
+
cos
2
(
a
)
prove tan(x)+(cos(x))/(1-sin(x))=sec(x)
prove
tan
(
x
)
+
cos
(
x
)
1
−
sin
(
x
)
=
sec
(
x
)
prove sin(x)cos(x)=tan(x)
prove
sin
(
x
)
cos
(
x
)
=
tan
(
x
)
prove cot((15pi)/8)=cot((7pi)/8)
prove
cot
(
1
5
π
8
)
=
cot
(
7
π
8
)
prove sin^4(x)=(sin^2(x))^2
prove
sin
4
(
x
)
=
(
sin
2
(
x
)
)
2
prove sin(2x)-cos(2x)= 1/2
prove
sin
(
2
x
)
−
cos
(
2
x
)
=
1
2
prove cos^{(2)}(θ)(1+tan^{(2)}(θ))=1
prove
cos
(
2
)
(
θ
)
(
1
+
tan
(
2
)
(
θ
)
)
=
1
prove 1-2sin^2(y)+sin^4(y)=cos^4(y)
prove
1
−
2
sin
2
(
y
)
+
sin
4
(
y
)
=
cos
4
(
y
)
prove (sin(x)+cos(x))^2-2sin(x)cos(x)=1
prove
(
sin
(
x
)
+
cos
(
x
)
)
2
−
2
sin
(
x
)
cos
(
x
)
=
1
prove (1-sin(3a))(sin(3a)+1)=cos^2(3a)
prove
(
1
−
sin
(
3
a
)
)
(
sin
(
3
a
)
+
1
)
=
cos
2
(
3
a
)
prove (sin(x))/(1+cos(2x))=tan(x)
prove
sin
(
x
)
1
+
cos
(
2
x
)
=
tan
(
x
)
prove sec(t)(csc(t)(tan(t)+cot(t)))=sec^2(t)+csc^2(t)
prove
sec
(
t
)
(
csc
(
t
)
(
tan
(
t
)
+
cot
(
t
)
)
)
=
sec
2
(
t
)
+
csc
2
(
t
)
prove (1+sin(x))^2+cos^2(x)=2+2sin(x)
prove
(
1
+
sin
(
x
)
)
2
+
cos
2
(
x
)
=
2
+
2
sin
(
x
)
prove cot(60)=(cos(60))/(sin(60))
prove
cot
(
6
0
◦
)
=
cos
(
6
0
◦
)
sin
(
6
0
◦
)
prove tan(-x)tan(pi/2-x)=-1
prove
tan
(
−
x
)
tan
(
π
2
−
x
)
=
−
1
prove tan(pi-θ)=-tan(x)
prove
tan
(
π
−
θ
)
=
−
tan
(
x
)
prove cot(θ)(sin(θ)+tan(θ))=cos(θ)+1
prove
cot
(
θ
)
(
sin
(
θ
)
+
tan
(
θ
)
)
=
cos
(
θ
)
+
1
prove (2-sin^2(x))csc^2(x)=cot^2(x)
prove
(
2
−
sin
2
(
x
)
)
csc
2
(
x
)
=
cot
2
(
x
)
prove 1/(tan(A))+tan(A)= 2/(sin(2A))
prove
1
tan
(
A
)
+
tan
(
A
)
=
2
sin
(
2
A
)
prove 1+sin(θ)=cos(θ)
prove
1
+
sin
(
θ
)
=
cos
(
θ
)
prove 1+((tan^2(x)))/(1+sec(x))=sec(x)
prove
1
+
(
tan
2
(
x
)
)
1
+
sec
(
x
)
=
sec
(
x
)
prove csc^2(x)*cos^2(x)=cot^2(x)
prove
csc
2
(
x
)
·
cos
2
(
x
)
=
cot
2
(
x
)
prove 1/(sec^3(x)cos^4(x))=sec(x)
prove
1
sec
3
(
x
)
cos
4
(
x
)
=
sec
(
x
)
prove csc^2(θ)+1=cot^2(θ)
prove
csc
2
(
θ
)
+
1
=
cot
2
(
θ
)
prove 1+tan^2(B)=sec^2(B)
prove
1
+
tan
2
(
B
)
=
sec
2
(
B
)
prove cos^2(7θ)-sin^2(7θ)=cos(14θ)
prove
cos
2
(
7
θ
)
−
sin
2
(
7
θ
)
=
cos
(
1
4
θ
)
prove sin^4(x)-(3/(4*sin^2(x)))+1=1
prove
sin
4
(
x
)
−
(
3
4
·
sin
2
(
x
)
)
+
1
=
1
prove arccot(x)=tan(x)
prove
arccot
(
x
)
=
tan
(
x
)
prove cot(θ)+tan(θ)=sec(θ)+csc(θ)
prove
cot
(
θ
)
+
tan
(
θ
)
=
sec
(
θ
)
+
csc
(
θ
)
prove 2sin(θ)+sin(2θ)=0
prove
2
sin
(
θ
)
+
sin
(
2
θ
)
=
0
prove cos^2(x)+cos(x)-1+sin^2(x)=cos(x)
prove
cos
2
(
x
)
+
cos
(
x
)
−
1
+
sin
2
(
x
)
=
cos
(
x
)
prove (2sin(x)cos(x))/(cos(x))=2
prove
2
sin
(
x
)
cos
(
x
)
cos
(
x
)
=
2
prove tan(x-(3pi)/2)=-cot(x)
prove
tan
(
x
−
3
π
2
)
=
−
cot
(
x
)
prove sin(θ)(cos^2(θ))/(sin(θ))=csc(θ)
prove
sin
(
θ
)
cos
2
(
θ
)
sin
(
θ
)
=
csc
(
θ
)
prove (tan^2(a)+1)/(sec(a))=sec(a)
prove
tan
2
(
a
)
+
1
sec
(
a
)
=
sec
(
a
)
prove 1/(tan(β)+cot(β))=sin(β)cos(β)
prove
1
tan
(
β
)
+
cot
(
β
)
=
sin
(
β
)
cos
(
β
)
prove cos(300)=1-2sin^2(150)
prove
cos
(
3
0
0
◦
)
=
1
−
2
sin
2
(
1
5
0
◦
)
prove csc^2(x)+3cot^2(x)-5=4(cot(x)-1)
prove
csc
2
(
x
)
+
3
cot
2
(
x
)
−
5
=
4
(
cot
(
x
)
−
1
)
prove (3)((cos(2z))^2)/2 =(3cos(4z))/4
prove
(
3
)
(
cos
(
2
z
)
)
2
2
=
3
cos
(
4
z
)
4
prove-2sin^2(x)+cos(x)+1=0
prove
−
2
sin
2
(
x
)
+
cos
(
x
)
+
1
=
0
prove (2cot(u))/(csc^2(u)-2)=tan(2u)
prove
2
cot
(
u
)
csc
2
(
u
)
−
2
=
tan
(
2
u
)
prove csc(2x)+cot(2x)=(1+cos(2x))/(sin(2x))
prove
csc
(
2
x
)
+
cot
(
2
x
)
=
1
+
cos
(
2
x
)
sin
(
2
x
)
prove 1-2sin^2(t)=2cos^2(t)-1
prove
1
−
2
sin
2
(
t
)
=
2
cos
2
(
t
)
−
1
prove 1/(cos^2(θ))=sec^2(θ)
prove
1
cos
2
(
θ
)
=
sec
2
(
θ
)
prove-cos(2t)sin(2t)+sin(2t)cos(2t)+0=0
prove
−
cos
(
2
t
)
sin
(
2
t
)
+
sin
(
2
t
)
cos
(
2
t
)
+
0
=
0
prove (tan(θ)sin(θ))/(sec(θ)-1)=1+cos(θ)
prove
tan
(
θ
)
sin
(
θ
)
sec
(
θ
)
−
1
=
1
+
cos
(
θ
)
prove 1-2sin^2(x)=-1+cos^2(x)
prove
1
−
2
sin
2
(
x
)
=
−
1
+
cos
2
(
x
)
prove (sin(x)sin(x))/(cos(x))=cos(x)
prove
sin
(
x
)
sin
(
x
)
cos
(
x
)
=
cos
(
x
)
prove (cos(x))/5 = 1/5*cos(x)
prove
cos
(
x
)
5
=
1
5
·
cos
(
x
)
prove (1+tan(x))/(sec(x))=cos(x)+sin(x)
prove
1
+
tan
(
x
)
sec
(
x
)
=
cos
(
x
)
+
sin
(
x
)
prove (sin(4x))/4 =(sin(x)cos(x))/2
prove
sin
(
4
x
)
4
=
sin
(
x
)
cos
(
x
)
2
prove (sin(x)tan(x))/(cos(x)+1)=sec(x)-1
prove
sin
(
x
)
tan
(
x
)
cos
(
x
)
+
1
=
sec
(
x
)
−
1
prove sin(a+b)-sin(a-b)=2sin(a)sin(b)
prove
sin
(
a
+
b
)
−
sin
(
a
−
b
)
=
2
sin
(
a
)
sin
(
b
)
prove sec(x)+1=(tan^2(x))/(sec(x)-1)
prove
sec
(
x
)
+
1
=
tan
2
(
x
)
sec
(
x
)
−
1
prove (sin(x))/(1-cos^2(x))=cos(x)
prove
sin
(
x
)
1
−
cos
2
(
x
)
=
cos
(
x
)
prove sin^2(x)-cos^2(x)=2(sin^2(x))-1
prove
sin
2
(
x
)
−
cos
2
(
x
)
=
2
(
sin
2
(
x
)
)
−
1
prove sin^2(3x)=9sin^3(x)cos^3(x)
prove
sin
2
(
3
x
)
=
9
sin
3
(
x
)
cos
3
(
x
)
prove sin^2(x)+cos(-2x)=cos^2(x)
prove
sin
2
(
x
)
+
cos
(
−
2
x
)
=
cos
2
(
x
)
prove sin(pi/2+a)=cos(a)
prove
sin
(
π
2
+
a
)
=
cos
(
a
)
prove 2sin^2(x)-cos(x)-2=0
prove
2
sin
2
(
x
)
−
cos
(
x
)
−
2
=
0
prove csc(t)-sin(t)=cot(t)*cos(t)
prove
csc
(
t
)
−
sin
(
t
)
=
cot
(
t
)
·
cos
(
t
)
prove (tan(θ)+6)/(sec(θ))=6cos(θ)+sin(θ)
prove
tan
(
θ
)
+
6
sec
(
θ
)
=
6
cos
(
θ
)
+
sin
(
θ
)
1
..
215
216
217
218
219
..
345